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0 Introduction

In this essay, we discuss the method of interlacing families introduced by Marcus, Spielman,
and Srivastava in [MSS15a] and |[MSS15b|, as well as some relevant background. Interlacing
of polynomials was studied previously in analysis, such as in [Fel80] and [Ded92|, but it was
only much later that Marcus, Spielman, and Srivastava found a new variant of the probabilistic
method that makes use of the interlacing property of polynomials (Section , and applied it to
prove the existence of certain Ramanujan graphs in spectral graph theory (Section[2)) and the
Anderson paving conjecture that is known to imply a positive answer to the Kadison—Singer
problem about C*-algebras (Section .

The interlacing property is required in their probabilistic method because of the following: In
the usual first moment method, we may show a bound E(X) < M for some random variable
X, and use P(X < E(X)) > 0 to conclude that some instance with X < M exists. However,
for some combinatorial problems, we need to consider roots of polynomialﬂ and for a random
polynomial f(x) of degree d with positive leading coefficient, a bound on the roots of E(f(x))
does not tell us much about the roots of f(x) at first sight, because the map A; sending a
polynomial f to its largest real root A (f) is non—linearﬂ

Fortunately, as we shall see in Lemma if the possible outcomes of f have a common inter-
lacing, then with non-zero probability we have A1 (f) < A\ (E(f)). Furthermore, by an inductive
argument as in Lemma the interlacing condition can be slightly relaxed. We just require
f to take values from the leaves of a tree, where each internal node is the expectation of its
children, and all siblings have a common interlacing. Such a tree is called an interlacing family

(Definition [1.9)).

It turns out a particular class of interlacing families (Lemma is useful in both the Ramanu-
jan graph and the Anderson paving conjecture applications. They arise from mixed charac-
teristic polynomials, which is of the form E(x(>2; 4;)) for some random rank one matrices
A;, and x(X) denotes the characteristic polynomial of X.

After these lemmas, we shall be ready to apply the method of interlacing families. For each
of the two problems we consider, we need to identify an interlacing family f,, and then prove
a bound A (E,(fy)) < M, and this would immediately give the existence of some ¢ such that
M (fs) < M, which translates to a combinatorial property that we are looking for.

For Ramanujan graphs, the interlacing family comes from the characteristic polynomials of the
signed adjacency matrices (Lemma , and in this case the expectation is a well-known
polynomial called the matching polynomial of the graph, which can be defined recursively,
and an inductive argument in [HL72] gives the desired bound on the roots of that polynomial

(Theorem [2.12)).

For the Anderson paving conjecture, the interlacing family comes from translating a problem
about partition of vectors (Aim [3.14)) into one about random vectors (Aim [3.15)), but to bound

the roots of the expectation we need a barrier argument. This requires convexity results

(Lemma [3.20) about the log-derivative CIV]} = 87f of a multivariate polynomial f, in order to

estimate the effect on the zero set of the polynomial f when one apply the operator (1 —9,,) to

it (Lemma (3.21)).

'Rota said in an interview that “...all sorts of problems of combinatorics can be viewed as problems of location
of the zeros of certain polynomials and in giving these zeros a combinatorial interpretation.” The interview is
avaibable at https://fas.org/sgp/othergov/doe/lanl/pubs/00326965.pdf

4Tao13, after Proposition 1.
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1 Roots of Polynomials

1.1 Interlacing Polynomials

Definition 1.1 (Roots). A polynomial in one variable is real-rooted if all of its roots are real.
If f(z) € R[z] is a real-rooted polynomial of degree d > 1, then we write A;(f) for its i-th largest
root (1 <i <d), i.e.

Ad(f) < Aa=1(f) < -+ < Aa(f) < M)

are the d roots of f.

For convenience, we shall write Ao(f) = 400 and Ag41(f) = —oo. If the leading coefficient of f
is positive, then for 0 < j < d and x € (A\j+1(f), A\j(f)), sgn f(z) = (—1)7, where

+1, ifa >0,
sgna = 40, if a =0,
-1, ifa<O.

Definition 1.2 (Interlacing). EI Let f(x),g(x) be real-rooted polynomials in R[z| of degree
d,d — 1 respectively. We say g(z) interlaces f(x) if their roots alternate, i.e.

Ma(f) < Xa—1(9) < Aa—1(f) < -+ < Aalg) < Aa(f) < Ailg) < M(f).

If fi(x), -+, fu(z) € R[z| are real-rooted and have degree d, and there is some g(z) of degree
d — 1 that interlaces all f;(x), then we say fi(x),---, fn(z) have a common interlacing.

So having a common interlacing is equivalent to having
mzax )‘j+1 (fz) § rniin )‘j (fz)
for 1 < j <d—1 (so that we can put A\;(g) between these two numbers).

Example 1.3. If f is a real-rooted polynomial of degree d, then by Rolle’s theorem, its derivative
f’ is a real-rooted polynomial that interlaces f.

In the rest of this subsection, we shall show the useful equivalence between having a common
interlacing and having all convex combinations real-rooted.

Lemma 1.4 (Root property from common interlacing). [] If f1(z), f2(z) € R[z] have degree d,
have positive leading coefficients, and have a common interlacing, then any convex combination
h(z) = (1 — p) fi(z) + pfa(z) (0 < p < 1) is real-rooted, and we have

min{A;(f1), Aj(f2)} < Aj(h) < max{A;(f1),A;(f2)}

for 1 <j<d.

Proof. P| It suffices to consider strict convex combinations where 0 < u < 1. First consider the
generic case where all 2d roots of f; and fy are distinct.

3MSS15a, Definition 4.1.
4Fel80, Theorem 2.
9Ded92, pp. 2.3-2.4.



Fix j € [d]. Without loss of generality, let a = X;(f1) < Aj(f2) = b. fi, fo have a common
interlacing, so Aj(f1) < b < A\j—1(f1), so sgn f1(b) = (—1)7~L. Similarly sgn f2(a) = (—1)7. But
then

h(a) = uf(a) has sign (~1),

h(B) = (1 — ) f(b) has sign (—1)7~",
so h has a real root between \;(f1) and A\;(f2). The same holds for 1 < j < d, so all roots of h
are real and its j-th root lies between A;(f1) and A;(f2).

As a corollary of Rouché’s theorem, the (complex) roots of a polynomial of degree d vary
continuously when the coefficients vary, as long as the leading coefficient never Vanishesﬁ This
allows us to perturb the polynomials to reduce to the generic case. Consider f;. with same
leading coefficients as f; but with A\;(fi-) = \;(fi) — (2j +)e. Only for finitely many e can some
two of the 2d roots of fi ., fo . be equal.

Since max{A;(f1), Aj(f2)} < min{X;_1(f1), \j—1(f2)} by common interlacing, for € > 0 we have
max{A;(f1e); Aj(fae)} < max{A;(f1), A (f2)} = (27 + De
<min{Aj1(f1), Aj-1(f2)} — (207 = 1) +2)e
< min{Aj1(f1e), Aj-1(f2.e)}-

This says for all sufficiently small ¢ > 0, fi ., fo. have a common interlacing. They are also in
the generic case above, so he = pufi .+ (1 — p) fa,c is real-rooted with

min{A; (f1e), Aj(f2.e)} < Aj(he) < max{A;(f1e), Aj(f2)}-
Taking € — 0 gives the desired result. O

In Lemma [I.4] if ¢ interlaces both f; and fs, then it interlaces h as well. This gives a natural
extension to n polynomials.

Lemma 1.5 (Root property from common interlacing). |Z|If fi(x), -, fu(x) € R[x] have degree
d, have positive leading coefficients, and have a common interlacing, then any convex combina-
tion h(z) = Y; pifi(z) (i >0, ; ui = 1) is real-rooted, and moreover

min A;(f;) < Aj(h) < max X;(f;)

for 1 <j <d.

9Ale, Corollary 3.3.
1CS07, Theorem 3.6.



Proof. Induct on n. The n = 2 case is Lemma

Let g interlace all f;. WLOG p1, 12 are not simultaneously zero. Then fi o = uﬁlrluz fi+ m;fuz fo

is a convex combination of f; and f2, so by Lemma f12 is real-rooted and g interlaces fi 2,
and min;<s A;(fi) < A;j(f1,2) < maxi<o Aj(fi)-

Now
h= (1 +p2)fio+ Y wifi
i>3
is a convex combination of fi 2, f3, -, fn, so the result follows from the induction hypothesis.

O]

A converse to Lemma holds (Lemma [1.7)), but in proving that, it is more convenient to
consider the ratio o)+ (1 Vx) 1 h(2)
pfi(x) + (1 —p)folx — U 1z
gu(z) = = +
pfa(x) wo fa(x)

instead of the convex combination h, = pfi + (1 — p) fo itself. g, and h, have the same zeros
except when h,, and fy have common factors that cancel in the fraction.

Lemma 1.6. |§|If fi(x), fa(z) € R[z] have positive leading coefficients, same degree d, and are
coprime, and all convex combinations h, = pfi + (1 — p)f2 (0 < pu < 1) are real-rooted, then
for 0 < p < 1, all roots of g, = I_T“ + % are simple, and hence all roots of h, are simple.

Proof. The roots of g, are precisely the roots of h,, which are real and vary continuously in
p. Suppose xg is a root of g,, of order I > 1, then for p close to j9, g, must have [ real roots
(counting multiplicity) near xg.

Near xg, we have g,,(z) = C(x — z¢)! + O((z — x0)"*1) for some constant C # 0. For p close to
to, the equation g,(x) = 0 can be rewritten as

L—po 1—p
—— " =C(z—z) 4+ O((z — o).
10 p
If we pick p such that the left hand side has different sign as C', then there is no real root near
xo for even [, and at most 1 real root for odd [. But we already know g, has [ roots near xg, so
[ =1 as required.

For the last claim, since fi(x) and fa(x) are coprime, h,(x) and fa(x) are also coprime for
0 < u <1, so hy, has the same roots as g,,. O

Lemma 1.7 (Convex combination criterion). ﬂSuppose fi(x), fa(z) € R[z] have positive leading
coefficients and same degree d. Then they have a common interlacing if and only if all convex
combinations >~ u; f; are real-rooted.

Proof. E “=" is Lemma

For “«<=", first we focus on the generic case where fi, fo are coprime and all roots are simple,
so that there are 2d distinct roots A;(f;) (1 <i<2,1 <j <d). Suppose f; and fp do not have
a common interlacing, then there is a largest j € [d — 1] such that

max(Aj+1(f1), Aj+1(f2)) > min(A;(f1), A;(f2))-

8Ded92, Lemma 2.2.
9Ded92, Theorem 2.1.
19Ded92, Proofs 2.5-2.7.



By maximality of j and since the roots are distinct,

max(A;(f1),Aj(f2)) <min(Xj—1(f1), Aj-1(f2))-
( — 1 might be zero in which case the right hand side is +00.)

Without loss of generaltiy, A;(fi) > A;(f2), then the inequalities above force

Ajr1(f2) < Aj(f2) < Aja(f1) < Aj(f1) <min(Aj—1(f1), Aj-1(f2))

as shown in the diagram.

______

~
~
-----

Aj+1(f1) Aj(f1)

Consider the interval I = (Aj11(f1),\;(f1)). For any = € I, sgn fi(z) = (=1)7, but I C
(A(f2), Aj1(f2), 50 sgn folx) = (—1)71, s0 2] < .

Now % is 0 at the end points of I, and % < 01in I, so it attains a minimum at some x* € 1.
|
—yg=h/f
0 Ai(f2)i Aj—1(f2):
min *
: x

-/\j-&-l(fl) Aj(f1)

Pick p € (0,1) such that
1—p filz*)

It fa(z*)




Then z* is a zero and a minimum to g, defined by

_1-p, Al2)
gnl@) = % +f2(37)7

so it has multiplicity at least 2, contradicting Lemma that the roots of g, are simple.

Now we have done the generic case. The next case is when fi(x) and f2(z) are coprime but each
might have repeated roots. In this case, consider fi. = (1—¢)fi+ef2 and for =efi+(1—¢)fo
for small € > 0. By Lemmal [1.6] both have simple roots which are real by assumption. Moreover,
their roots are close to those of f; and f5 respectively, so they remain coprime, so they have a
common interlacing by the generic case, i.e. for all j € [d — 1],

max{Aj+1(fre), Aj+1(fee)} < min{A;(f1e) Aj(fo.e)}-

By continuity of roots, we can take ¢ — 0 to obtain

max{A;j+1(f1), Aj+1(f2)} < min{A;(f1), A;(f2)},

so f1 and fy have a common interlacing.

Finally, we deal with common factors of fi(z) and f2(x). Induct on the degree of their ged. If
fi(xz) = (z—a)gi(x), then the assumption “h, is real-rooted” says (z —a)(ug1(z)+ (1 —p)g2(x))
is real-rooted, so all convex combinations of g; and gs are real-rooted and they have a common
interlacing by induction hypothesis.

Now we can add back the root @ and still have a common interlacing: EITHER

max{A;j+1(g1), Aj+1(g2)} < o <min{A;(g1), A;(92)},

for some j (allow j = 0 or j = d — 1), in which case we can label the extra o as \j11(f1) and
Aj+1(f2), OR « is strictly between Aj(g1) and Aj(g2) for some j € [d — 1] (WLOG \;j(g1) <
Aj(g2)), in which case we can label one a as \j(f1) to pair up with X\;(f2) = \j(g2), and the
other a as A\j1(f2) to pair up with Xj11(f1) = Aj(g1)- O

Lemma 1.8 (Convex combination criterion). E Suppose fi(z), fa(z), -+, fu(x) € R[x] have
positive leading coefficients and same degree d. Then they have a common interlacing if and
only if all convex combinations Y u; f; are real-rooted.

Proof. “«<=":1f f1,---, fn have no common interlacing, then for some j € [d—1], max; \;(f;) >
min; Aj41(f;). Without loss of generality, assume A;(f1) > Aj41(f2). This says fi and fo does
not have common interlacing, so some convex combination pfi + (1 — p) f2 is not real-rooted by

Lemma which in particular is a convex combination of fi,---, fn.
“==": this is Lemma [[.5 O

1.2 Interlacing Families

The root property in Lemma holds for a larger class of families of polynomials, because we
may apply the inequality in several steps like

majn <mbm /\1(fab)> < main A1 <Z ij@) <X\ <Z Miijz'j> )
J i

It suffices to have common interlacing at each step. More precisely:

HCS07, Theorem 3.6.



Definition 1.9 (Interlacing family). |E| Let ¥ be a finite set (the “alphabet”) and T' C ¥* =
{o : o finite sequence in ¥}. We say T is a finite tree if T is finite, non-empty, and whenever
o= (00,01, - ,0n—1) € T, we also have all its prefixes o | i = (09,01, -+ ,04—1) € T. Note that
this implies @ € T.

For o € T, if for some a € X, 0a = (09,01, -+ ,0n—1,a) is also in T, then we say oa is a child
of 0. o is a leaf if it has no children. The children of the same ¢ are siblings.

An interlacing family is a family of polynomials f,(x) € R[z] indexed by o € T, T a finite
tree, satisfying:

1) All f, have the same degree d.

2) All f, have positive leading coefficient.

(1)
(2)
(3) For all 0 € T, f, is real-rooted.
(4)

4) If 0 € T is not a leaf, then f, is a convex combination of f,, for children ca € T of o, and

the children f,, have a common interlacing. (One might note that (1) and (3) are implied
by (2), (4), Lemma and our definition of common interlacing.)

Sometimes we do not distinguish between ¢ and f, and say e.g. f, is a sibling of f;.

Example 1.10 (Interlacing family with no common interlacing). Let T' = {@, 1,2, 11,12, 21,22},
and

fii(z) = 22 —1= (r—1)(z+1),
fio(x) = 22— 49 = (x =T)(x+7),

Fu(z) = %fn(:n) + %fu(m) — 2?2 = (z—5)(x+5).

Then, let fgl(SL‘) = fll(l‘ — 3) and fg(x) == fl (l‘ - 3)

Since fi has roots —5,5 and fy has roots —2, 8, they have a common interlacing. Similarly we
can verify this gives an interlacing family (choose any convex combination fg of f1, f2). However,
f11 and fo1 have no common interlacing.

Nevertheless, the roots still satisfy an inequality similar to Lemma [1.5

Lemma 1.11 (Root property of interlacing families). |E|If {fs : 0 € T} is an interlacing family
of degree d, then for 1 < j < d,

SaiUo) = (J2) = g Ao
Proof. By Lemma for each non-leaf o, there is a child oa such that A\;(fsa) < \j(fs).

Therefore we can start at fz and iterate the above until we arrive at some leaf o such that
Nj(fa) £ XAj(fz). Similarly there is a leaf 8 such that A\;(fz) < A;(f3). O

This provides a new probabilistic method in the following way: Let £ be a random leaf of a finite
tree T' (with non-zero probability at each leaf). Suppose we have some polynomial f, for each
leaf 0. Then for any o € T' of length n, we can define f, to be the conditional expectation of f
given that £ | n = o, i.e. the first n entries of £ form o.

12MSS15al, Definition 4.3.
13MSS15al, Theorem 4.4.



This gives f, = Eq4(fsq), where we are taking the conditional expectation on the (n+1)-th entry
of £ given that the first n entries form o, so the convex combination condition in the definition
of interlacing families is automatically satisfied. Moreover, fo = E(fe).

So if we can show that {f, : 0 € T} defined this way is an interlacing family, then we know
M(fe) < Mi(fe) = M(E(fe)) with non-zero probability. A particularly important example of
such an interlacing family is described in Lemma We shall use this key idea in Sections
and [3| to prove results on graphs and matrix paving.

Without the interlacing condition, it is difficult to say anything about the roots of f¢ just from
knowing the roots of E(f¢).

1.3 Real Rooted and Stable Polynomials

In order to prove that a family of polynomials is an interlacing family, we need to show that each
polynomial is real-rooted, and all siblings have a common interlacing, which again is asserting
all convex combinations are real-rooted by Lemma [1.8] Therefore, we need a systematic way of
proving real-rootedness.

Definition 1.12 (Stability and real stability). E A polynomial f(z1,---,2,) € Clz1,- -, 2n]
is stable if it has no zeros with positive imaginary parts, i.e. for all (z1,---,2,) € C", if
S(zi) > 0 for all 4, then f(z1,---,2,) # 0. A polynomial is real stable if it is stable and has
real coefficients.

Note that if a polynomial in one variable is real stable, then it is real-rooted (otherwise imaginary
roots come in conjugate pairs). Therefore, stability of polynomials generalises real-rootedness
to complex and multivariate polynomials.

Multivariate stability can be defined in terms of monovariate stability:

Lemma 1.13. E f(z1,- - ,2pn) is stable if and only if g(t) = f(a + bt) € C[t] is stable for all
a € R" beRY,.

Proof. “=": If f(a + bty) = 0 for some ty with Sty > 0, then I(a; + bitg) = b;S(to) > 0, so f
is not stable.

“«<=”: Suppose f(c1, -+ ,cn) = 0 with S¢; > 0 for all &. Then define a; = Re; € R and
b; = S¢; € RT. This says 7 is a root to g(t) = f(a + bt) € C[t], so g is not stable. O

We now show that some determinants are stable (Example [1.14), and some transformations
preserve (real) stability (Lemmas and [1.16)). Together, they generate a large class of stable
polynomials.

Example 1.14 (Some determinants are real stable). E If Ay, -+, A, are positive semi-definite
self-adjoint matrices, then f(z1,---,2,) = det (33; 2i4;) € Clz1,-- - , 2] is real stable or identi-
cally zero.

Proof. Again, by continuity of roots with respect to coefficients, it suffices to consider the generic
case where all A; are positive definite.

14BB10, Definition 1.1.
15BB10, Lemma 2.1.
16BB10, Proposition 1.12.



“Stable”: We shall apply Lemma [[.T3} Fix a € R",b € R7;. We have

det (Z (ai + b,t) A1> = det (t <Z blAl> + Z aiAi> .
Write
P = ZaiAi, and Q = szAz

both of which are self-adjoint, and moreover () is positive definite, so @ is invertible and has a
self-adjoint square root, so we can write the polynomial as

det (tQ + P) = det Q2 det(t] + Q™ 2PQ~/?) det Q'/2,
which is a constant times the characteristic polynomial of a self-adjoint matrix —Q~'/2PQ~1/2,
whence real-rooted.

“Real”: Note that when all z; are real, Y, z;4; is self-adjoint, so the polynomial has real value.
This proves f has real coefficients. O

Lemma 1.15 (Evaluating stable polynomials). ELet n>2.If f(z1,-+ ,2n—1,2n) € Clz1,- -+ , 23]
is stable, and ¢ is a constant with Sc¢ > 0, then g(z1, -+ , zn—1) = (21, , 2n—-1,¢) € Clz1,- -+ , 2 1]
is either stable or identically zero. It might be identically zero only when c is real.

Proof. For the generic case where 3¢ > 0, if Sz; > 0 for 1 < z; <n—1, then (21, - ,2,-1,¢) is
not a zero of f by stability, so (z1,--- ,2,—1) is not a zero of g.

Now suppose Sc¢ = 0. Suppose g is not identically zero and has a zero (ai,---,a,—1) with
Sa; > 0. Consider ge(z1) = f(z1,a2, -+ ,an—1,c+ i) for small € > 0. This has a root a; with
Sa; > 0 when e = 0. By continuity of roots, g. also has a root a}j with Saj > 0 for sufficiently
small € > 0, contradicting the generic case. O

Remark. Therefore if f is real stable, and c is real, then g is also real stable or identically zero.

Lemma 1.16 (Lieb—Sokal lemma). If f(z1,--,2n) € Clz1,--+ ,2n] is stable, then (1 —
0.,)f(21,- -+, 2p) is stable.

Proof. mFix as, -+ ,a, € C with Sa; > 0, and let g(z1) = f(z1,a2, -+ ,a,). Since f is stable,
g is also stable by Lemma Let the degree of g be d > 0, and the roots be by,--- , by, so
g(z1) = CT];(21 — b;) for some non-zero constant C' € C. Then Jb; < 0.

Now

(1= 0:)g(21) = g(z1) <1 - Z P i b) :
j J

When Sz > 0, (21 —bj) > 0,50 S (Zj ﬁ) < 0. Also g(z1) # 0, so the right hand side is
non-zero. This means (1 — 0,,)g(#1) on the left hand side never vanishes when 3z; > 0. O

Ta013, Lemma 12.

8Special case of [LS81, Lemma 2.3.
19MSS15bl Corollary 3.8.

20Tao13 Lemma 12.

10



There is a characterisation of all stability-preserving differential operators in the Weyl algebra
Clz1,+* y2n, 0z -+, 0z, ], of which Lemma is a special case, but we do not require this
theorem.

Theorem (Borcea-Bréndén characterisation). E Consider the operator

_ a1 an 561 B
T= > Cajanpropa?i - zgn0ft-- 00,
ai,Bi€Z>0

where only finitely many coefficients cq;...q, 8.3, € C are non-zero. This operator preserves

stability of polynomials in C[z1,--- , 2] if and only if the corresponding polynomial
D Capmanprepat 2 (mwn)? s (cwg)
a;,Bi€ZL>0
is stable in Clz1, -+, zp, w1, , Wy).

Using this, 1 — 0,, preserves stability if and only if 1 + w; is stable, and indeed we see 1+ w is
real-rooted.

1.4 Mixed Characteristic Polynomial

In this subsection, we shall put Section[I.3]|to use and prove that a special family of polynomials is
an interlacing family. This family arises from the characteristic polynomials of random matrices
of the form Y, v;v}, where v; are random vectors in C". In particular, the matrix is a sum of
rank 1 matrices.

Lemma 1.17 (Rank 1 updates are affine). E For u,v € C", det(I + uv*) = 1 + v*'u =
1+ tr(uv®).

Proof. By passing a multiplicative constant from v to u, we may assume |v| = 1. Extend
to an orthonormal basis B = {v,vs, -+, vy}, so that I = vv* + Y1 5 v;vf. Now I + uv* =
(u 4+ v)v* + >, v;v;. With respect to the basis B, I + uv* has matrix

v u+1 0 0 --- 0
vou 1 0 0
viu 0 1 0
vyu 0 0 --- 1
So the determinant is 1 + v*u and the final equality follows from tr(AB) = tr(BA). O

Corollary 1.18 (Rank 1 updates are affine). |§| If B is a fixed n by n matrix, and A is a
(variable) rank 1 matrix, then det(B+ A) is an affine function in the components in A4, i.e. there
is a linear function f : M, ,(C) — C (depending on B) such that

det(B + A) = det B+ f(A)

holds for all rank one matrices A.

2IBB10l Theorem 1.2.
#AMSS15b, Lemma 3.10.
23Taol3| Lemma 8.
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Proof. For the generic case where B is invertible, we have
det(B + A) = det(B) det(I + B™*A) = det(B)(1 + tr(B~1A))

by Lemma[1.17] (since B~' A has rank one). We can further rewrite this as det B + tr(adj(B)A),
where adj B = det(B)B~! is the adjugate matrix, whose entries are polynomials in the entries
of B.

Now det(B + A) = det B + tr(adj(B)A) and both sides are polynomial in the entries of B, so
they must be equal even for non-invertible B. O

We are considering the sum of many rank 1 updates, so the effect is “multiaffine”.

Definition 1.19 (Multiaffine polynomials). @ A polynomial f(z1, -+ ,2,) € Clz1, -, 2] is
multiaffine if it is affine in each z; when we fix all other variables. In other words, if we write

— al a
f(Zl,"' ’Zn) - 2 : Cay,a2, ,an?1 ”'Znnv
a17"'7an20

then all coefficients cq, ... 4, With some a; > 2 are 0.

n

The multiaffine part of f(z1,---,z2y), denoted by MAP(f)(21, -+ ,2n), 18

al a
z : Calv'“ 7anz1 e Znn
0<a;<1 Vi

using the notation above. MAP removes all terms that has degree at least 2 in some variable.

Lemma 1.20 (Expression of MAP). |§|

(2

MAP(f)(tla"‘ 7t?’L) = <H(1+tiazi)>f(zl7“' 7Zn)

z1=+=2n=0
Proof. For 1 <i1 <io <+ <ig<mn,

azilazlé ' "8Zidf(zlv"' azn)

z1=29="=2n=0

is precisely the coefficient of the ¢; t;, - - - ¢;, term in the polynomial f(¢,---,%,). Since both
sides are multiaffine in the ¢t-variables, this says all their corresponding coefficients are equal. [

Lemma 1.21 (Mixed characteristic polynomial). @

(1) If vy,--- ,v, are independent random vectors in C¢, each taking finitely many possible
values, then the mean of the characteristic polynomial

Ex (i vwf) () = Edet (x[ — Zviv;‘>
i=1 -

only depends on the expectations A; = E(v;v}). Note that A; must be positive semi-definite.

2Von18| p. 1.
28Tao13|, after Corollary 9.
20MSS15bl Theorem 4.1.
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(2) This expression is called the mixed characteristic polynomial of Ay,--- A, denoted
by u[A1, -+, Ap](z), and equal to

(H(l - 821.)) det <x[ + ZZ: ZiAz‘>

%

z1="=2n=0
Note that this defines p[A;,- -, A,] for all matrices Ay, -, A,, not just those expressible
as E(vv*).

Proof. ]

(1) By Corollary[L.18] det (z1 — 3=, v;v}) is affine in the entries of v;v} when we fix other v, so
when we expand det (zI — 3", v;v}) as a polynomial in the entries of v;v}, it is multiaffine,
i.e. each term is a product of entries from w;v] for distinct . By independence, the
expectation of that product is the product of the respective expectations.

(2) Write U; for the random rank one matrix v;v}. For general matrices B; - -- , By, consider
the polynomial Pg(z)(t1,--- ,t,) = det (xI + >, t;B;) . We can think of this as a polynomial
in t; B;ji, where B, are entries of B;, so MAP(Pg(x))(t1,--- ,t,), which is multiaffine in ¢,
must also be multiaffine in the entries of B;.

By iterating Corollary Py(x)(t1, - ,tn) = det (xI + 3, t;U;) is already multiaffine in
ti, - ,tn, SO we have

PU(CC)(tL v ,tn) = MAP(PU(CU))(tl, N 7tn).
Taking expectations, by multiaffineness in matrix entries and independence, we have

EPy(x)(t1,--- ,tn) = MAP(Pry(x))(t1, - -+ ,tn) = MAP(Pa(z))(t1,- - ,tn). Q)
The characteristic polynomial is
X (Z ’Uﬂ];f) (IE) = PU(:’U)(_L =1, _1)5
i=1

so taking t; = —1 for all 7 in (V) gives

Hence

plAL, - Ap)(x) = <H(1 - 8,32)) det <a?I + ZZiAi>

i

z1=+=2,=0

by Lemma (with ¢; = —1). O

Remark. We cannot go from Py (z)(t1, - ,t,) to Pey(z)(t1,- - ,tn). The reason is that 4; =
EU; might not have rank one, so Pa(z)(t1,--- ,t,) = det (z + >_;t;A;) might not be affine in
A;. Tt is therefore necessary to go through the multiaffine part of det (zI 4+ >;¢;A;) as above.

Lemma 1.22. @If Aq, -+, A, are positive semi-definite self-adjoint d by d matrices, then their
mixed characteristic polynomial u[Ag, -+, A,](z) is a real polynomial and is real-rooted.

2TTao13|, Corollary 4.
28MSS15b), Corollary 4.4.
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Proof. Example says det(xl + Y, 2z;A;) is stable. By iterating Lemma we know
(I1:i(1 — 05,)) det (xI + >=; z;A;) is stable. Finally by Lemma substituting z; = z9 = -+ =

zn, = 0 preserves stability, so u[Ai,-- -, Ap](x) is stable.
Az, -+, Apl(z) is also real (I + 37, z;A; is self-adjoint for real x and z;) and monovariate, so
it is real-rooted. O

Finally, we describe how we can get an interlacing family from the mixed characteristic polyno-
mials.

Lemma 1.23 (Mixed characteristic polynomials give rise to an interlacing family). @ Let v;

(1 =1,2,--- ,n) be independent random vectors, with v; taking value from the set of constant
vectors {w;1,- -+ ,w;s, } C C. Let & be the random sequence such that v; = Wig, .
Let T ={o= (01, ,0,):0<k<nand 1 <og; <s;} and for 0 = (01, -+ ,0%) € T, define

fa vX <walww + Z ;v >

i=k+1

= U[wlﬂlwlap e >wk0kwkak7E(vk+1vk+1)> T ,E('Un’v;;)]($)
Then {f, : ¢ € T} is an interlacing family. In particular, there is some leaf o such that
M(fo) £ Mi(fz). Equivalently, A\i(fe) < A(E(fe)) with non-zero probability.
Proof. f, is monic and has degree d for all o € T. Moreover, they are real-rooted by Lemma[I.22]

It remains to show that for any non-leaf o = (o1, - ,0%) with 0 < k < n, the polynomials f,,
(1 < a < sgy1) have a common interlacing, and f, is a convex combination of f,,. The latter
is clear from f, = E¢,  (fs¢,,,). To show a common interlacing, we shall apply Lemma SO
we need to consider an arbitrary convex combination.

A convex combination 3, iq fsq is just the expectation taken over a different distribution: if v’
takes value wy41, with probability s, independent of other v;, then

k
Zﬂafaa Zﬂa v X (Z wZUZwZU + Wkt awk+1 a™t Z ) ()

=1 i=k+2

k n
=Ey,Eyx <Z Wig, w}, +v'v" + Z vwf) (z)

=1 i=k+2

* * /0% * *
= :U’['wlalwlal? to 7’wk0kwkok7E’v’ (U v )7 E('karQUkJrQ)v o 7E(Unvn)](x)7
which is again real-rooted as a mixed characteristic polynomial.

Therefore they form an interlacing family, and the last claim follows from Lemma [I.11 O

Both interlacing families we consider in Sections[2and [3|are of the form described by Lemmal|[1.23

29MSS15b|, Theorem 4.5.
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2 Ramanujan Graphs of All Degrees

All graphs in this section are simple and undirected.

2.1 Ramanujan Graphs

Definition 2.1 (Spectrum of a graph). For a graph G = ([n], F), its adjacency matrix A is

1, ifiy ek, )
iy The eigenvalues of the graph

the symmetric n by n matrix defined by A;; = {0 i) ¢ B
, if iy .

are the eigenvalues of A, denoted by
M (G) < —1(G) < --- < A (G).

They do not depend on the labelling of the vertices.

If G is d-regular, then we have A\1(G) = d, and A\,(G) > —d, so we say \i(G) = d is a trivial
eigenvalue. If in addition, G is bipartite, then \,(G) = —d and A\,+1-i(G) = —Xi(G) for all i.
In this case A\, (G) = —d is another trivial eigenvalue.

Assuming connectivity, the other eigenvalues (A\2(G) to A,—1(G), and A, (G) if G non-bipartite)
have absolute values less than d. They are the non-trivial eigenvalues.

Definition 2.2 (Ramanujan graphs). m A (connected) d-regular graph G is Ramanujan if all
of its non-trivial eigenvalues \;(G) satisfies |\;(G)| < 2v/d — 1.

The aim of this section is to present the proof of the following theorem as one of the earliest
applications of the interlacing family method.

Aim 2.3 (Marcus—Spielman—Srivastava 2015). @ For every d > 3, there is an infinite family of
d-regular bipartite Ramanujan graphs.

To build this family of Ramanujan graphs, we start with some trivial Ramanujan graphs (Ex-
ample , and build larger and larger graphs, each being twice as large as the previous one,
and such that the eigenvalues of the new graph are the old ones together with some new ones
(Lemma . In order to guarantee the new graph is still Ramanujan, we need to ensure that
the new eigenvalues have absolute value at most 2v/d — 1.

This is where Lemma comes in, providing a bound on A; of some polynomial. However,
we cannot simultaneously control both the new A; and the new A, (in the sense that there is
some o such that A\i(fs) < A (E(f)), and some ¢’ such that A\, (f,7) > A\, (E(f)), but we cannot
guarantee o = ¢’). Therefore, the proof using Lemma [1.23]only works for bipartite graphs: they
have A,—;11 = —\;, so once we know the new A is at most 2v/d — 1, then we immediately know
the new ), is also at least —2v/d — 1.

One reason why we care about Ramanujan graphs is that they are spectral expanders, which
has nice quasi-randomness properties. For example, a version of the expander mixing lemma
most relevant to bipartite Ramanujan graphs is stated below.

Theorem (Bipartite expander mixing lemma). @ If G is a d-regular bipartite graph with parts
U, V,and |U| = |V| = n, and A = max{|\2|,|A2n—1]}, then for any X C U and Y C V, the

39L.PS88, Definition 1.1.
31MSS15a, Theorem 5.5.
32DSV12, Lemma 8.
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number e(X,Y") of edges between X and Y is close to what we expect for a random graph, in
the sense that

d
o(X.Y) = & x| Y1 < WIXTY]

Moreover, Ramaunujan graphs are the best possible spectral expanders in the following sense:

Theorem (Alon-Boppana bound). ﬁ If G is a d-regular graph of order n, then
A2(G) > 2vVd —1—O((logn) ™)

for large n. In particular, for any € > 0, there is no infinite family (G;) of d-regular graphs such
that A2(G;) < 2v/d — 1 — ¢ for all 1.

2.2 Identifying an Interlacing Family

First, we make precise how we would build the bipartite Ramanujan graphs.

Example 2.4 (Trivial Ramanujan graphs). E] For any d > 1, the complete bipartite graph Ky 4
is Ramanujan.

Proof. Its adjancency matrix is

1 10 0

1 -1 0
1 11’

0o --- 0 1 --- 1

which has rank 2, so except Ai1(Kqq) = d and \ygq(K44) = —d, all other eigenvalues are 0.  [J

The operation that we use to double the order of a graph is the following:

Definition 2.5 (2-lifts). E] A 2-lift of a graph G = (V, E) is a graph G’ = (V', E’) together
with a homomorphism 7 : G’ — G such that:

(1) For each v € V, there are exactly two v € V' with 7(v') = v.

(2) For each edge uv € E and v € V' with 7(u’) = w, there is a unique v’ € V'’ such that
u'v' € E" and w(v') = v.

Remark. If we think of the graph as a topological cell-complex, then a 2-lift is just a 2-sheeted
covering space. Similarly for n-lifts and universal covers (which must be trees because universal
covers are simply connected).

Definition 2.6 (Signed adjacency matrix of 2-lifts). Y| Let G = ([n], E). Let G’ = (V', E’) and
7: G’ — G be a 2-ift. For i € [n], let 77'(i) = {a;,b;}. By (2) in Definition 2.5, for any ij € E,
we have exactly one of the following:

33A1086|, p.95.
34MSS15a, Lemma 5.4.
39BL06, Section 2.
39BL06, Section 2.
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a) a;a;, bjb; € E' and a;b;, bja; ¢ E’, or
J j j J
(b) aibj, biaj € B and a;iag, bzbj Qf E'.

Define the signing s : E — {1} with respect to the partition V' = {a1,--- ,a,} U{b1, - , by}
(41, if (a) holds, s(ij), ifij € E,
by s(ij) = . o
—1, if (b) holds, 0, ifij ¢ E.
is the signed adjacency matrix.

and we say the n by n matrix As with (Ay);; = {

The signed adjacency matrix of a 2-lift is well-defined up to conjugation: if we swap the la-
bels of a pair a;, b;, then all entries in the i-th row or i-th column of Ay change signs (the
intersection (As);; is always 0), which is the effect of changing basis from {ej,---,e,} to

{ela €41, _ei7e’i-‘rla tee 7en}-

\(
Example 2.7 (2-lifts). Start with the graph G on the right. 0 e e

There are different 2-lifts. Some of them are shown below, which we call Gy, G2, G3 from left to
right. G is just two disjoint copies of G, and its signing is given by s1(ij) = +1 for all ij. Go,
despite having s2(24) = —1 # s1(24), is isomorphic to G;. G5 has s3(ij) = —1 for all ij, and is
bipartite. In general, the 2-lift with s(ij) = —1 for all 45 is always bipartite, and it is called the
canonical double cover’’]

& (o5) "

7\ al az ay4
o) (=) (=) X%%X <
b ()

/7 3\ - b1 bg b4
D=O=0ONNO=0R0 b

The 2-lift is a useful construction in spectral graph theory, because its eigenvalues can be de-
scribed easily.

Lemma 2.8 (Eigenvalues of 2-lifts). @ Let G = ([n],E), G’ = (V,E') with 7 : G’ — G a
2-lift, and A be its signed adjacency matrix. Then the 2n eigenvalues of G’ are precisely the n
eigenvalues of G together with the n eigenvalues of Ay (counting multiplicity).

Proof. We may label the vertices of G’ so that V' = [2n] and 7(i) = 7w(n+1i) =i € G, and let s

be the signing with respect to the partition [2n] = {1,2,--- ,n}U{n+1,--- ,2n}. For i,j € [n],
1 if s(if) = +1, 1 if s(if) = —1,

let (Af)i; = : S(m)_ and (A )i = : S(w)_ , so that A; = AT — A,
0, otherwise, 0, otherwise,

and the unsigned adjacency matrix of G is A = AT + A7 .

By definition of the signing, G’ has adjacency matrix
AT A7
[ s s
A= ( . ;) |
AT A7\ (v A (Y
Ay AT \v)  “\w)’

37The name “bipartite double cover” is discouraged by [Pis18]
38BL06, Lemma, 3.1.

If Av = M\, then
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giving n eigenvalues of A’.

Similarly, if A;v = Av, then

(i 2 (5) (%)

giving another n eigenvalues of A’ because any two vectors of the form (vq,v1) and (ve, —v2)
must be orthogonal. Hence the 2n eigenvectors of A" are precisely those of A and As. O

Therefore, it suffices to show that for any d-regular graph G, there is a signing s such that the
eigenvalues of A; have absolute value at most 2/d — 1. This is the Bilu—Linial conjecture
Our bipartite case is easier because the eigenvalues pair up, and it suffices to show that there is
some s such that A\j(As) <2v/d— 1.

Lemma 2.9. @ For any graph G = ([n], E), the characteristic polynomials fs(z) = x(4s)(x)
(s is a signing) are leaves of an interlacing family with the polynomial fy; = E(fs) at the root
of the tree, where E is taken with s uniformly at random. Therefore, there is some s such that

A1(fs) < A (E(f5))

Proof. Think of a signing s: E — {£1} as a string s = (s1, 82, , $m) of length m = |E| with
s; = +1. We would like to apply Lemma but the contribution of s; (corresponding to the
i-th edge a;b; € E, a; < b;) to Ay is either

0 +1 or 0 -1

+1 0 -1 0
in some submatrix (the intersection of the a;-th and b;-th rows and columns), which is not a
rank 1 update.
However, if we add 1 to the diagonal of that submatrix, then it has rank 1. Formally, let
w; 1 = €q, + €, and w; _1 = €4, — €p,, then the contribution of s; to A; is

* p—

* *
Wi,s; W, 5, — €a;€q; — €b; €y,

so summing over 1 < 7 < m, we obtain

m n
— . * p.p*
A=Y w i, Y desel
i=1 j=1

where d; is the degree of vertex j. Let A be the maximum degree, then

m n
As+ Al = Zwmiwzsi + Z(A —dj)eje;,
i=1 J=1

so by Lemma m (with random vectors v; taking values w; +1 uniformly and independently at
random, and for 1 < j < n, A—d; many auxilliary vectors taking values e; surely), {x(As+AI) :
s € {£1}} is the set of leaves of an interlacing family.

Since
X(As)(x) = x(As + AI)(x + A),

{x(As) : s € {£1}™} is also the set of leaves of an interlacing family, so A1(fs) < A1 (E(fs)) for
some s. O

Now, it suffices to prove A1 (E(fs)) < 2v/d — 1.

39BLO06| Conjecture 3.1.
49MSS15a, Theorem 5.2.
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2.3 Bounding the Roots

We can identify E(fs) with a generating function that counts matchings, and [HL72] showed
that its roots have absolute value at most 2v/d — 1.

Lemma 2.10 (Matching polynomial). @ Let G be a graph on vertex set [n] with m edges. Let
s € {£1}™ be uniformly at random, and A, the signed adjacency matrix corresponding to s.
Then Ex(As)(z) is equal to the matching polynomial

where m; is the number of matchings with ¢ edges in G, and it is real-rooted.

Proof. We need to compute Ex(A;)(z) = Edet(xl — Ag), which is just Edet(z] + As) because
Ay and — A, have the same distribution. Write By = ol + Aj,.

Expand det B; as the sum of the terms sgn(o) [T (Bs)io(i), Where o traverses all permutations
[n] — [n] and sgn denotes the sign of the permutation.

If for some fixed o, the term does not vanish, then the only factors that can appear are either of
the form (By);i, which is x, or (By);; with ij € E. If (Bs);; appears, but (Bjy);; does not appear,
then by independence and E(By);; = 0, the expectation of that term also vanish. If both (Bs);;
and (Bjs)j; appear, then they cancel each other (both are 1 with same sign).

Therefore, the terms with non-zero expectations are those with o being a product of disjoint
transpositions (and fixing all other i € [n]). If ¢ is a product of k disjoint transpositions
(corresponding to a matching with k edges), then sgn(o) = (—1)*, and it fixes n — 2k indices,
so it contribute (—1)¥z" 2% to the expectation. This shows Ex(4s)(x) = pg(x).

The last claim follows from Lemma because there is an interlacing family { fa:ac€ {il}gm}
such that fz = Ex(As) and f, = x(A,) for leaves a € {£1}™. O

[HL72] investigated the roots of the matching polynomial for general weighted graphs. They
did this in the context of statistical physics, where vertices are particles that can either exist in
isolation (as “monomer”) or bonded with another particle (as part of a “dimer”), and dimers
can have different energies. They asked whether a phase transition will occur in the system
when the fugacity of monomers varies (corresponding to the variable x in pg(x)). The bound
|IAi(ua)| < 24/d—1 (Theorem was an intermediate step in their work.

Now we shall present their proof but we restrict to unweighted graphs.

Lemma 2.11 (Recurrence for the matching polynomial). H Let i be a vertex of G, then

po(@) = - po-i(r) — > pa—i-j(x),
i€G—i,
ijeE

where G — v is the the graph G with vertex v removed.

Proof. Write my(G) for the number of matchings with k£ edges in G. Given a matching M
consisting of k edges in G, exactly one of the following holds:

4IMSS15a, Theorem 3.6.
42HL72, Equation (4.1).
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(a) the vertex i is not matched, in which case M is a matching in G — i, or

(b) the vertex ¢ is matched to some j € G —1i, with ij € E, in which case M \ {ij} is a matching
of size k—1in G —i—j, so

mi(G) =mp(G — i)+ Z mi-1(G —i—j).
jeG—1,
ijEE

Multiply both sides by (—1)*2"2* and sum over k, and we obtain the recurrence. O

Knowing that ug has a recursive definition, we can bound its roots by an inductive argument.

Theorem 2.12 (Heilmann—Lieb 1972). @ Let G be a graph of order n with max degree A > 2.
Then the largest root A1(ug) of the matching polynomial satisfies A\ (ug) < 2v/A — 1.

Proof. For a spanning subgraph H of G, we say (H, H — i) is a good pair if ¢ € H and there is
an edge ij in G such that j ¢ H. We shall prove by induction the following claim:

Claim. [**| If (H, H —1) is a good pair of spanning subgraphs of G, then whenever x > 2+/A —1,
we have pp—i(x) >0, pg(x) >0, and

LG

por—i(T)

Proof of Claim. Base case: If H has only 1 vertex i, then ug(z) = x and pg_;(x) = 1, so the
result holds.

Inductive step: by Lemma [2.11

pr (@) =opp—i(z) — Y pH—imj(2).
jEH—,
ijeE

Since (H,H — i) is a good pair, i has an edge not in H, so the sum over j has at most A — 1
terms. Moreover, for each term, since j € H —i and ij € E, (H — i, H —i — j) is a good pair (j
has an edge ij not in H — i), so by the induction hypothesis, pg—;(x) > 0, ug—;—;(z) > 0, and

pH—i—j(T) < ”“Hf/%(f) whenever z > 2v/A — 1.

Therefore, when x > 2/ A — 1,

pr(x) = apgi(x) — > pr—ij(r)

Tes’
>2V/A =1 py_i(z) — (A-1)- M{A_Zﬁxl)
= VA =1 py_i(x).
In particular, py(z) > 0 when x > 2/A — 1. O

43HL72, Theorem 4.3, unweighted version.
“HL72, Lemma 4.4.
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(G,G — i) is not a good pair for any i, so if we perform the inductive step as above, we do
not know that the sum has at most A — 1 terms. Nonetheless, it has at most A terms, so for

x>2vA—1and any i € G:

po(x) = epg—i(r) = Y pe—ij(@)
jea—i,

ijeE
>2VA =1 pg-i(z) = A- MGAZExl)
> 0.

(The last inequality holds because 2(A — 1) > A for A > 2.)

Hence A1 (ug) < 2v/A —1. O

To conclude this section:

Proof of Aim[2.3 Let Gy = Kgqgq4, which is a d-regular bipartite Ramanujan graph by Exam-
ple By Lemma Lemma [2.10, and Theorem [2.12] in that order, there is a signing
s: E(Gy) — {£1} such that

A (X(A4)) < M (Ex(AL) = Mng) < 2Vd— L.

Since 2-lifts of bipartite graphs are bipartite, the 2-lift G; corresponding to the signing s is
bipartite. By Lemma [2.8] its eigenvalues are the eigenvalues of Gy and those of A, so the
eigenvalues of Ay satisfies Aog—ij11(As) = —Ai(As) and we have Agg(A4s) > —2v/d — 1.

This means (1 is a d-regular bipartite Ramanujan graph of order 4d. We can repeat this
procedure to build an infinite family Go, Gy, - - - such that G,, is a d-regular bipartite Ramanujan
graph of order 2"+1d. O

3 Kadison—Singer Problem

Definition 3.1 (Some C*-algebras). Write £ for the fy-space {(a1,ag,---) : a; € C, 22, |ag)® <
oo}, which is a complex Hilbert space with inner product

o0
(T,y)=x'y=) =iy
=1

B(£3) is the algebra of bounded operators o — f5. Inside B(¢3), there is an abelian subalge-
bra D(£2) consisting of the diagonal operators, i.e. those T : o — lo with T'(ay, a9, --+) =
(dray,dsag, - --) for some (dq,ds, - --) with sup; |d;| < 00).

Apart from the algebra operations (4, —, -) in B(¢2), there are the operator norm ||| : B({2) —
R>q, defined by
IT|| = sup [T,

z|=1,
xEly

and the map * : B(f2) — B({2) sending an operator T' € B({s) to its adjoint 7™, defined by

<‘T7Ty> = <T*$7y> Vilfyy € 52'

49Ta013|, before Theorem 29.
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Together they make B(¢2) into a C*-algebra (whose precise definition we shall omit). Similarly
D(¢9) is a C*-algebra.

For self-adjoint A, B € B({2), we write A = B if A — B is positive semi-definite.

Definition 3.2 (States). A state on B(¢3) is a bounded linear map f : B(¢2) — C that satisfies
f(I) =1 for the identity operator I and f(A) > 0 for all positive semi-definite A € B(¢3) (in
other words, if A > B, then f(A) > f(B)). A state is pure if it cannot be written as a convex
combination of other states. Similarly for states on D(¢3). A state f : B(f2) — C extends a
state g : D(¢3) — C if they agree on D(43), i.e. f| D({2) =g.

The concept of a state is closedly related to quantum mechanics, where a system has a C*-algebra
(the “algebra of observables”), and a physical quantity that can be measured (an “observable”)
corresponds to a self-adjoint operator 7' in that algebra. There might be uncertianties when we
measure an observable quantity of a state s, but the expected outcome of measuring 7" in s is

s(T) [

In the 1950’s, Kadison and Singer were concerned about the functional analytic foundation of
Dirac’s work in quantum mechanics. Dirac assumed that each pure state on a maximal abelian
C*-subalgebra X C B(f2) has a unique state extension to B(¢3), but Kadison and Singer gave
some counterexample X # D(/3) such that the extension is not unique. Whether one has
uniqueness for the case X = D({2) remained open for decades. This is called the Kadison—
Singer problem@

Theorem 3.3 (Kadison—Singer problem). Every pure state f : D({3) — C extends uniquely to
a state f’ : B(fy) — C.

Existence is clear: given T' € B(¢3), we can take its diagonal part, and then apply f, and we
can check this defines a state B(f2) — C. Henceforth we focus on the uniqueness.

It is known that the Anderson paving conjecture below is equivalent to Theorem [3.3l[*| In
Section we shall present the proof that Anderson paving conjecture implies Kadison—Singer.
In Sections [3.2] and we shall prove the paving conjecture using interlacing families.

Aim 3.4 (Anderson paving conjecture). @ For every € > 0, there is an r € Z* such that:

For every n x n self-adjoint complex matrix 7" whose diagonal entries are all 0, we can partition
the indices in [n] into r sets Sy, S2,-- -, Sy such that ||Ps,TPs,|| < ¢||T|| for all i, where P, is
the orthogonal projection to the indices in S;.

(In other words, Ps,T'Ps, is the submatrix of T' that is the intersection of rows and columns
whose indices are in S;. We are “paving” the diagonal of T' by smaller submatrices.)

3.1 From Paving Conjecture to Kadison—Singer Problem

In this subsection, we assume Aim [3.4 and prove Theorem [3.3] Most results in this subsection
are in fact bidirectional, but we shall just include the proof that allows us to go from the paving
conjecture to the Kadison—Singer problem.

The first step is a compactness argument that allows us to go from finite dimension (Aim [3.4)
to infinite dimension, since Theorem is about infinite dimensional operators.

16Bog+90,, pp. 233-234.
41Cas+06, p.2.

48Har13, Theorems 5.11 and 6.1.
49MSS15b, Conjecture 1.3.
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Lemma 3.5 (Compactness argument). m (We have assumed Aim ) For all € > 0, there is
an r € Z* such that for every self-adjoint T € B({3) with zero diagonal, we can partition Z*
into r sets S1,--- , Sy such that ||Ps,TPg,|| < e ||T]| for all i.

Proof. Fix € > 0. Consider the top-left n by n submatrix of T, denoted by T,. By assump-
tion, there is r € Z* such that for every n, there is a partition ST, ---,S™ of [n], such that

[P TP | < 21Tl r

Think of the partition as a function ¢” : [n] — [r] with ¢”(m) = i if m € SP'. There is an infinite
subset A1 C Z* such that ¢"(1) is constant for all n € Ay. Similarly there is an infinite subset
A C A;p such that ¢"(2) is constant for all n € Ay, and so on. We therefore have a decreasing
family A1 O Ay O Ag DO --- with all Ay infinite and for all n € Ay, ¢" agrees on [k], so we can
define ¢ : Z* — [r] by ¢(k) = ¢"(k) for any n € Ay, and this gives a partition S; = {k : ¢(k) = i}
of Z+.

Consider the set S;,, of first m elements in S;. If the largest of them is k, then S;,, C S} for
any n € Ag, so
|Psi. T Ps,..|| < || Pso T Psy

<e|Tul <<l

But we also know that when m — oo, ||Ps, . TPs, . H — || Ps, T Ps,|| from below, so || Ps, T Ps,|| <
e||T|. O

Before moving on, we shall say very roughly the reason why the Kadison—Singer problem can be
rewritten into something like Aim We have already seen that any state f : D(f2) — C has
an extension f’: B(¢3) — C by first taking the diagonal part of T € B(¢2) and then apply f. So
if we split 7" into a sum of the diagonal part D and the other part 7", then to show uniqueness,
we need to prove f'(T') = f(D), which by linearity is equivalent to f'(T") = 0. So we can focus
on operators 7" with zero diagonal.

Now the partition in Lemma comes in. For the given T, we have a partition of Z™* into
finitely many parts, so one of the S; is “large”, in the sense that every extension f’: B({s) — C
of f: D(f2) — C only cares about the submatrix Pg, 7’ Pg, but not the other entries of 7", so
that f'(Ps,T'Ps,) = f/(T") (Lemma [3.11)). But we can make ||Ps,T"Ps, || arbitrarily small, so by
continuity of f’, f'(Ps, T’ Ps,) is arbitrarily small, so f'(T") = 0 (Lemma [3.12)).

To fill in the gaps above, we need to understand what the pure states on D({s) are, and to make
sure that the “large” S; has the desired property (that Ps, 7" Ps, determines the value of f'(T")).
The pure states on D(¢3) can be described using ultrafilters, and “large” means being in the
ultrafilter.

Definition 3.6 (Ultrafilters). 1] An ultrafilter on Z* is a family U of subsets of Z* such that:

(1) o¢U, ZT e U,

(2) If Ac U and A C B, then B € U,
(
(

3) If A,B €U, then AN B € U;

)
)
)
4) For every A C Z™T, either A€ U or ZT \ A € U.

Equivalently, (4) can be replaced by “If AU B € U, then either A € U or B € U”, or its natural
generalisation to n sets A1, -+, Aj,.

®0Har13, Theorem 6.1 and Claim 6.2.
5I'Har13|, Definitions 3.1 and 3.3.
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We shall show that there is a one-to-one correspondence between pure states f : D(¢2) — C and
ultrafilters I/ over Z*. One direction is the following. The other is in Lemma

Lemma 3.7 (Pure states must be fy). E If f: D({3) — Cis a pure state, then {A C ZT :
f(P4) = 1} is an ultrafilter, where P4 is the diagonal projection as before.

Moreover, the map f +— {A CZ* : f(P4) = 1} is injective.

Proof. Suppose f is a pure state, and let Y = {A C ZT : f(P4) = 1}. We check the definition
of an ultrafilter:

(1) f(Pg) = f(0) =0, and f(Pz+) = f(I) = 1.

(2) If f(P4) =1and B D A, then P4 <= Pg < I,s01 = f(Pa) < f(Pg) < f(I) =1, so
f(Pp) =1.

(3) If f(Pa) = f(Pp) = 1, then from P4 + Pp = I 4+ Psnp and linearity, we have f(Panp) =
f(Pa) + f(P) — f(I) = 1.

(4) Since Pa + Pz+\4 = I, by positivity we have 0 < f(Pa) <1, 0 < f(Pz+\4) < 1, and by
linearity they sum to 1. We need to show that one of them is 1. Suppose not, then we
have f(P4) = o € (0,1). Let g(X) = 1 f(PaX) and h(X) = 11 f(Pz+\4X). Both g and
h are states, and f(X) = f(PaX) + f(Pz+\aX) = ag(X) + (1 — a)h(X), but f is pure, so
f =g = h. However,

1

h(Py) = Lf(Pz+\APA) =1"=

1l -«

f(0)=0#1=g(Pa),

contradiction.

The map is injective: If f, g are two pure states D(¢2) — C both mapped to U, then we have seen
above that f, g must map diagonal projections P4 to 1 if A € U, and 0 if A ¢ U, so they agree
on all diagonal projections. However, D(¢3) is the closed linear span of the diagonal projections,
so f and g agree on D({3). O

In the finite dimensional setting, we would have that U is an ultrafilter over a finite set [n],
which implies U is principal, i.e. there is some k € [n] such that A € Y <= k € A, and so the
pure states just send the n by n matrix X to Xi;. However, in the infinite dimensional setting,
we need to consider the non-principal ultrafilters, giving rise to other pure states.

To see the other direction of the correspondence (i.e. given an ultrafilter & we can define a
pure state fi), we need the help of U-limits, which allows us to say something like “f;; sends
T € D(¥¢3) to z if the majority of the diagonal entries Tj; are close to z”.

Definition 3.8 (U/-limits). E Given a sequence (z,,) in C, we say limy x,, = z if for all € > 0,
the set {n: |z, —z| <e} eU.

The usual limit has the cofinite filter 7 = {A : ZT \ A is finite} in place of U, but F is not
ultra. If we have an ultrafilter &/ D F, then more sets are in U than in F, so it becomes easier
to have {n : |z, — x| < €} € U, so more sequences have U-limits, so this generalises the usual
limit.

52Har13|, Theorem 4.3.
53Har13|, Definition 3.15.
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Lemma 3.9 (Existence and uniqueness of /-limits). @For any sequence () in C and ultrafilter
U, there is at most one x such that limy z, = z. If moreover (z,) is bounded, then for any
ultrafilter & on Z™, limy x,, exists.

Proof. If © # y, then for 0 < £ < @, the sets {n : |z, —z| < e} and {n : |z, —y| < e} are
disjoint, so they cannot both be in U, so (x,) cannot have two distinct I-limits.

Now suppose (x,,) is bounded and has no U-limit. Then every y € C is not a U-limit, so there is
an €, > 0 such that the set A, = {n: |z, —y| < ey} ¢ U. Since (z,) lies in a compact region C
and the open balls By = {z : |vt — y| < gy} for y € C form an open cover of C, there is a finite
subcover, say

CCB,UB,U -UB,.

For every n € Z*, x,, € C, so x,, € By, for some %, which gives n € A,,. So A, UA,,U---UA,, =
Z7T, but this says one of the A,, € U, contradiction. O

Similar to the usual limit, limy, has properties such as limy z,, + limyg y,, = limy (2, + ynﬂ and
limy xpy, = limgy x, limy, yﬂ The usual proof can be translated to the proof for U-limits by
changing “Take N = max (N1, N2) € Z” to “Take A = A; N Ay € U”. Using this, we can define
a state f : D(¢3) — C from an ultrafilter U.

Lemma 3.10 (Characterisation of pure states on D({2)). ﬂ For every ultrafilter i on Z, the
map [y : D(¢3) — C defined by fi(X) = limy X, (where (X,,,) is the sequence of diagonal
entries of X) satisfies {4 : fyy(Pa) = 1} = U, and fi; is a pure state.

Therefore the map f — {A C ZT : f(P4) = 1} as in Lemma is also surjective, and is a
one-to-one correspondence between ultrafilters on Z* and pure states on D(43).

Proof. If X € D(¢3), then (X,,) is a bounded sequence, so by Lemma limyy X, exists and
is unique. For A C Z", (P4)ny is the indicator 1,4, 50 fyi(Pa) = limy 1,c4 € {0,1}, and

so {A: fu(Pa) =1} =U.

We can check fi; is linear, continuous, and satisfies fi;(I) = 1 and fi;(X) > 0 for X > 0, so it
is a state. Suppose g, h are states with fiy = ag + (1 — «)h for some a € (0,1). We have seen
g(P4) €10,1] for all A C Z™ and similarly for h, but f;;(Pa) € {0,1} is already at an endpoint of
the interval, so g(P4) = h(P4) = fu(Pa). Again D({2) is the closed linear span of the diagonal
projections, so we conclude g(X) = h(X) = fy(X) for all X € D(¢3). So fy is pure. O

The pure state fi; only care about the “majority” of the entries of X € D(¢3). More precisely,

if AeU,then fy(Pg\a) =0, so forall B C Z*, fy(Pyi\aPB) = fulPgz+\anp) = 0 since
0 X Pz anp = Pz+\a- Therefore by linearity, fy(Pz+\ 4X) =0 for all X € D({2), and

Ju(X) = fu(PaX) + fu(Pzi\aX) = fu(PaX).

This property also holds for extensions of f,.

®4Har13|, Claims 3.16 and 3.18.
55Har13|, Claim 3.20.

56Har13| Claim 3.21.

®THar13, Theorem 4.2.
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Lemma 3.11. @ If f: D(¢3) — Cis a pure state and [’ : B(f3) — C extends f, then for any
Aecl, f'(PaX) = f'(X) for all X € B({3). Similarly f/(XP4) = f'(X) for all X € B({3).

Proof. Since f’ is linear and f/(X) > 0 for all X = 0, the map (X,Y) — f/(X*Y) is a positive
semi-definite sesquilinear form (inner product except f/(X*X) can be 0 for some X # 0), so by
Cauchy—Schwarz inequality,

‘f’(Png\AY)‘Q < f/(PZ*+\APZ+\A)f/(Y*Y) = f(PZ+\A>f/(Y*Y) =0,
50 f'(Pgi\aY) = 0and f'(PaY) = f'(Y) = f'(Pzr\aY) = f'(Y). O

Lemma 3.12. @ If f: D({3) — C is a pure state, and f' : B(f3) — C is a state extending f,
then for any T' € B({2) self-adjoint with zero diagonal, f'(T) = 0.

Proof. By Lemma f = fu for some ultrafilter Y. Fix ¢ > 0 and T' € B({3). By Lemma
with ¢’ sufficiently small, there is a partition Si,--- , S, of Z* such that |Ps,TPs,|| <& ||T|| < e
for all i € [r]. Since S; USU---US, = Z* € U, some S; € U. By Lemma [3.11] f/(T) =
fI(PSzT) = f/(PSzTPSZ)

From ||Ps,TPg,|| < €, we know
—ePs, = Ps,TPs; = €Pg,,
SO
78f’(PSi) < f/(PS'LTPSi) < 5f,(PSi)v
ie. |f'(Ps,TPs,)| <e,so |f(T)| <e. This holds for all ¢ > 0, so f/(T") = 0. O

Lemma is enough to show that the extension is unique to all 7' € B({2).

Proof of Theorem[3.3 Given T € B(f?), we can decompose it as T = T + iTy where T} =
2T +T*) and Tb = 5L(T — T*) are both self-adjoint. Since f'(T) = f'(T1) + if'(T»), f' is
uniquely determined by its values at the self-adjoint operators. Henceforth assume 7T is self-
adjoint.

Write T'= D + Ty where D € D({s) is the diagonal part of T, and Ty is self-adjoint with zero
diagonal. Since f’ extends f, we have f'(D) = f(D), and f'(Tp) = 0 by Lemma Hence
f(T) = f(D)+ f'(Ty) = f(D), and the extension f’ is uniquely determined by f. O

3.2 Identifying an Interlacing Family
In this section we shall see how we can reduce Aim [3.4lto a statement in terms of random vectors
that would allow us to apply Lemma We start with some linear algebra tricks.

Lemma 3.13. m The following are equivalent:

(1) E (Anderson paving conjecture, diagonal 0 self-adjoint, Aim
For every € > 0, there is an r € Z" such that:

For every n by n self-adjoint complex matrix T whose diagonal entries are all 0, we can
partition [n] into r sets Sy, Se,--- , S, such that ||Ps,TPs,|| < e||T| for all i.

58Har13|, Corollary C.19.
59Har13, Lemma 5.9.
59Har13, Theorem 6.3.
51MSS15b, Theorem 6.1.
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(2) @ (Anderson paving conjecture, diagonal % orthogonal projection)
For every € > 0, there is an r € Z™ such that:

For every n by n orthogonal projection matrix @ (i.e. Q* = Q and Q? = Q) whose diagonal
entries are all %, we can partition [n] into r sets Si,Sa2,---, S, such that || Ps,QPs,| <
e |Q| = 1= for all i.

Proof. (1) = (2): Given ¢, let r be given by (1). If Q) is an orthogonal projection with diagonal
%, then T' = 2Q — I is zero diagonal self-adjoint. Since the eigenvalues of @ are 0 or 1 (and
not all 0), the eigenvalues of T" are 1, so ||Q] = 1 and ||T|| = 1. By (1), there is a partition
Si,---, Sy of [n] such that |Ps,TPg,|| < ¢, so

I+4+T

Pg.
HPSiQPSiH_HPSi( 9 )PSi :

2

Ps, T Pg,
2

< 1+5.
- 2

<

v

(2) = (1): Given ¢, let r be given by (2). Let T be a diagonal 0 self-adjoint n x n matrix. By
rescaling, we may assume ||T|| = 1, so that I — T? is positive semi-definite self-adjoint and has
a square root. Let ) be the 2n by 2n matrix

1 ( T VI, — T2>

|
slnto\y—  _r

Then all diagonal entries of ) are %, and @ is self-adjoint. Also,

QQZEI +1 T VI, — T2 +1 I, 0
n VI, — T2 -T a\o 1,

4 2
So by (2), there is a partition Sy, - -+, S, of [2n] such that ||Ps,QPs,|| < 3£. Restricting to the
top-left n by n block, we have a partition S7,---, S, of [n] given by S, = S; N [n] such that

= Q.

I, +T 1
HPSf nt Ps',' <1
1 k2 2
so the largest eigenvalue Ay (Png Psé) <e.
Similarly, restricting to the bottom-right n by n block, we have another partition S{,--- , S/ of

[n] given by S/ ={a—n:n+1<a<2n,a € S;} such that

I, — <1+5.
5 <

2

T
HPS( Pg

So the smallest eigenvalue A, (PSyTPS/_/) > —c.
Now we can take the coarsest common refinement Ry, = S, NSy (a,b € [r]), which is a partition

of [n] into r? sets such that ||Pg,,TPg,,| < ¢ for all a,b. O

. . . . . 1 o« o
Consider an n by n orthogonal projection @ with diagonal 52. We have Q;; = ejQe; =
e;Q*Qe; = ufu; if we write u; = Qe;, so in particular, ||u;||” = wiu; = Qi = % More-
over,

1P5,QPs, | = ||(wiwy), jes, | <

1ESK

52MSS15b, Theorem 6.2.
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(if Ps,QPs,v = Av then ) ,cq, uju; also acts on };cg, vju; as multiplication by A). Also,
S =37 Qeie;QF = QIQT = Q.
n

Since all u; live in the image of @ (which is an F-dimensional subspace because tr Q@ = 5

2
Q@ acts as the identity on this subspace), we can instead think of w; as vectors from C™/2 g0
that Y7y w;u; = I,,/o and still have Q;; = uju; for 7, j € [n]. Summarising, we have reduced
Aim [3.4] to the following:

Aim 3.14. For every € > 0, there is an ~ € Z* such that if 37 w;uj = I,, /o and ug]|* = 1,
then there is a partition Si,--- , S, of [n] such that for all k € [r],

1ESE

and

<1+€.
=72

Since Y e, wiu; is positive semi-definite, the norm is just the largest eigenvalue A1 (Y e, wiuy),
which we might be able to control using Lemma [1.11| once we identify an interlacing family.

Indeed, a random partition can be thought of as a random assignment

Uu; 0 0
0 u; 0
V; — 0 ) 0 s 0
0 0 u;

This fits into the framework of Lemma which gives an interlacing family. Say v; takes each
of the r possible values with equal probability, then

wu;, 0 -~ 0 S uiul 0 e 0
i . "1 0 wu; --- O 1 0 diuiuy e 0
ZE(vivi):Z; : U ~r : : :
i=1 i=1 . . . . . .
0 0 - wuu; 0 0 e Y uu
1
“trn/2,

and a realisation of Y, v;v] is of the form

Y ies; Wi] 0 e 0
0 Dies, Wity - 0
. : . : )
0 0 T Dies, Wil
where 51, - - -, S, form some partition of [n], so [[32; viv] || = max;c() ||Yies, wiuf|| and it suffices

to show that [|3; v;v}|| < 13 with non-zero probability.
Therefore, we have reduced Aim to the following.

Aim 3.15. @ For every € > 0, there is an r € Z" such that for all n € 2Z*, if independent
random vectors v; € C"™/? (taking finitely many possible values) satisfies S E(vv)) = %Im /2
and |jv;|? = 3, then with non-zero probability we have

n
E V]
i=1

1+e

<
-2

63MSS15b), Corollary 1.5.
54MSS15b, Theorem 1.4.
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We may recognise, by Lemma that some suitable family of the mixed characteristic poly-
nomials arising from these random vectors is an interlacing family. Aim (in a more general
form) will be shown in the next subsection by establishing an upper bound on the largest root

of Ex(Y- vv)).

3.3 Bounding the Roots

By Lemma any bound on the roots of the mixed characteristic polynomial Ex (3" v;v})
gives a bound in Aim

We can rescale (write 4; = rE(v;v})) in Aim so that we have Y>> A4; = I and tr4; =
rE(viv;) = 5, and A; are positive semi-definite self-adjoint. Their mixed characteristic polyno-
mial is then

p[Ay, - Ay (H )det (m[—i—z,zz z)
=1 =1 z1=+=2p=0
(H )det (Z x4+ z) l)
=1 =1 z1="=2n,=0
i=1 = z1==zn=2=L.
After the rescaling, we need to prove a bound A\ (u[A1, -, A4,]) < 1+€r Consider the polyno-
mial
p(z1,- -, 2n) = (H (1— 82)) det (Z ziAZ-) ,
i=1 i=1
then p[Ay, -, Ay)(2z) = p(z, 2, ,x), so to show i (u[A1, -, A,]) < L=, it suffices to show
the stronger statement that p(z1,--- ,2y) is non-zero when z; > 1+87" for all 4.

Definition 3.16 (Above). m Let p(z1, -+ ,2n) € Rlz1, -+ ,2,]. We say a € R" is above all
zeros of p if p(z1,- -+, 2z,) > 0 whenever z; > a; for all i.

We would like to find some M = L +o(r) < 3=r (for large r) such that (M, M, -, M) is above
all zeros of p. We already know that (e,e,--- ,¢) is above all zeros of det(zl_l z;A;) for any
e>0. (Ifall z; > ¢, then Y ; A; = I = 0 and each A; = 0, so }_; z;4; is positive definite, so the
determinant is non-zero.)

But p(z1,---,2n) = ([[;(1 — 0z,)) det(>2; ziAi), so we need to understand how (1 — 0,,) affects
the position of the zeros. First we look at a failed attempt. We might try to use to following

Lemma 3.17. @ If f(2) € R[z] has degree d and is real-rooted, and a is above all roots of f,
then a + d is above all roots of (1 — 0,)f. In other words, A\; goes up by at most d when we
apply 1 — 0,.

Proof. For © > a > A\ (f), we have f(z) #0,s0 (1 —0,)f(z) =0 < f(z)— f'(x) =0 <~

J;((;”)) = 1. So if x is a root to (1 — 9,)f, then

69MSS15b), Definition 5.3.
56Special case of [Mar66, Corollary 18.2a.
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SO

sox < \N(f)+d<a+d. O

However, this is not enough. Since the A;’s are 5 by = matrices, det(}"; 2;4;) has degree
5, so if we simply apply Lemma in each coordinate, from (e,e,--- ,¢) is above all zeros
of det(}"7; 2,A;) we can only conclude that (¢ + 5, e + 5F,--- ;e + &) is above all zeros of

p(21,- -+, 2,). This is bad because we want a bound # + o(r) but have got an extra factor of n.

Some reasons that this fails are:

(1) We did not take into account the condition tr 4; < 5.

(2) The bound in Lemma (the “4d”) is not tight in most cases. As we can see in the proof,
equality holds if and only if \;(f) = A1(f) for all 4, i.e. all roots are equal.

If we know that the roots of f are not close to each other, or that the initial bound a is already
very far from the largest root, then we should somehow be able to obtain an increment that
is less than +d. This leads to more careful consideration of the following quantity, which has
appeared in the proof above.

Definition 3.18 (Barrier function). m Let f(z1, -+ ,2n) € Rlz1,- -, 2,] and assume we are
in a region where f is positive. The barrier function or log-derivative in the i-th coordinate
is defined as

9.

f

’;}zﬁzilogf:

In the one-variable case with all roots being real, <I>}(a) =3 ﬁz(f) measures how far a > Ay (f)
is away from the roots \;(f), 1 < i < d. When a — 400, @}(f) — 0, but when a — A\ (f)™",
there is a barrier <I>}(f) — +00.

Note that det(>; z;A;) and p(z1, - - - , z,) are both real stable by Example and LemmalL.16]
For real stable polynomials f, there are a few convexity results regarding <I>jc that would help us
control the zeros of (1 — 0,,)f better than the failed attempt above.

Lemma 3.19 (Convexity lemma, 1 variable). @ If f(z1,---,2n) is a real stable polynomial,
and a € R" is above all zeros of f, then CID}c(a) > 0,621<I>}(a) < 0,8§1<I>}(a) > 0, ie. <I>}c is a
positive decreasing convex function in z; when we are above all zeros of f.

Proof. Let g(z1) = f(z1,a2,--+ ,ay). Since a is above all zeros of f, a; is above all zeros of g,
and g is real-rooted by Lemma Let g(z1) = CTI% (21 — Xi(g)), where \;(g9) < a1 are the
real roots of g, then

9/(21) _ Z 1
9(z1) oz = Nilg)

i=1 t

@}(217a2’ ... 7an) g

Hence the first derivative is Y% , m and the second derivative is Y%, m. Now

substitute z; = a1 to obtain the result. O

67MSS15b], Definition 5.4.
58Tao13 Section 3, before Lemma 16.
%9Tao13, Lemma 16.
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Lemma 3.20 (Convexity lemma, 2 variables). m If f(z1,---,2,) is a real stable polynomial,
and a € R" is above all zeros of f, then 822<I>}(a) < 0,8§2<I>}(a) > 0, ie. @} is a positive
decreasing convex (not necessarily strictly) function in zo when we are above all zeros of f.

Combining with Lemma this says for all 4 and j (not necessarily distinct), we have
0., ®%(a) <0, 02®%(a)>0
when a is above all zeros of f.
Proof. Let g,,(22) = f(z1,22,a3,--- ,an). Let d be its degree in zo. We may also assume g, (22)

is irreducible (otherwise the log-derivative is just the sum of log-derivatives of the irreducible
factors).

As in the proof of Lemma [3.19] g, is real-rooted for any b € R. Write

g () & 1
az 10 Z’Z’a’...’an — 1 = A &
2108 f(21, 22, a3 ) 9z (22) ;252_)‘1(921) *
and
d -1
832 log f(z1,22,a3, -+ ,an) :Z (©)

i=1 (22 - )‘l(gzl))Q .

Since 0,0, log f(a) = 9,0, log f(a), and similarly 92 0., log f(a) = 0.,02 log f(a), the in-
equalities we are required to show are that the left hand side of (&) is non-increasing in z; and

that of () is non-decreasing in z.

Since a is above all zeros of f, we have az > Ai(ga, ), so it suffices to show that \;(g.,) is non-
increasing in z;. We would like to take 0,,, but there are some technicalities before we know
Ai(gz, ) is differentiable for most z;.

By continuity, it suffices to prove the inequalities 0,, <I>} (a) <0 and 8§2<I>}(a) > 0 for generic a,
i.e. on a dense subset of {a : a above all roots of f}.

Claim. ¢,(z2) € Rz3] has d distinct real roots except for finitely many b € R.

Proof of Claim. The coefficient of the highest term 2§ in g.,(22) is a polynomial in z; which
only has finitely many roots, so gp has d roots except for finitely many b.

The discriminant A(g, ) is a polynomial in z1. If A(g,,) is identically zero, then the irreducible
polynomial g, (z2) over the field R(z1) has repeated roots in the algebraic closure R(z;), which
is impossible since R(z1) has characteristic 0. So again A(g,,) is a non-zero polynomial and has
finitely many roots. All other choices of b give distinct roots to gp. O

So for generic z; € R, g, has roots A\g(gz,) < Ad—1(gz,) < -+ < A1(gs, ). Denote by A the set of
such z1, then A is dense open in R.

Claim. The map z1 — \i(gz,) can be extended holomorphically to a complex neighbourhood of
b for every b € A.

"Tao13, Lemma 17.
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Proof of Claim. Consider the roots-to-coefficients map « : C'* — C" defined by

()\17)\27”' 7)\71) — <Z)\Z7Z)‘Z)\]7 71_[)%) .

i i<j
One can compute that the derivative has determinant [];;(A; — A;), so when this determinant is

non-zero, « has a local holomorphic inverse a1 (“coefficients-to-roots”), by the inverse function
theorem.

Since the coefficient of z§ in g., (z2) does not vanish when 2 is at b € A, the coefficients (divided
by the highest coefficient) are also holomorphic in 21 near b. Composing with a~! and projecting
to the i-th coordinate gives the desired holomorphic map. O

Having done these two claims, we know \;(g,,) is differentiable for most z;. It remains to
show that 01);(g.,) < 0. Suppose not, then 0;,A;(gz,)|.;=p = h > 0 for some b € A, so for
sufficiently small € > 0, A\j(gp4ei) = Aj(gp) + hei + o(e) has positive real part. But this means
(b+ €1, \j(gbyei), a3, -+ ,an) is a zero of f, contradicting stability (and Lemma . O

It is possible to deduce these convexity results just from the following representation theorem
of real stable polynomials in 2 variabled’] but we shall not use it:

Theorem (Helton—Vinnikov 2007). m If g(z1, 22) is a real stable polynomial, then there exist
positive semi-definite self-adjoint matrices A1 and Ao and a self-adjoint matrix Ag such that

g(zl, ZQ) =4 det(Ao + 2141 + ZQAQ).

Next, we shall see how we may apply the convexity result Lemma to prove a bound with a
smaller increment than in Lemma [3.17

Lemma 3.21. m If f(z1,--+,z2y) is real stable polynomial and a lies above all zeros of f, and
for some 7 and § > 0,
then a + de; lies above all zeros of (1 — 0,)f, and for all j,

@{kaﬁ)f(a +de;) < Dh(a).

Proof. We start by showing that a (whence a + de;) is above all zeros of (1 — 9,,) f. Suppose b
with b; > a; for all j. Then f(b) # 0, and by monotonicity in each coordinate (Lemma, ,
@Z]}(b) < <I>§c(a) <1,s0 (1—-0,)f(b) = (1 — <I>3c(b)) f(b) # 0 as required.

Next we need to prove ‘ '
@zl_a%)f(a + de;) < <I>?c(a).

On the left hand side,
(I){l—f‘)zi)f = 9., log((1 — ®%) - f)
= 0., log(1 — %) + 9, log f

TIMSS15b, Lemma 5.7.

"2The version most relevant to us is BB10, Corollary 6.7.
"The original theorem is [HV07, Theorem 2.2.
74MSS15b), Lemma, 5.10.

"Taol3 Lemma 20.
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so it suffices to prove '
—0; @}(a + de;)

1- <I>§c(a + de;)

< ¥)(a) — ¥)(a + de;)

By convexity in Lemma [3.20, on the right hand side we have
¥} (a) > ®(a+ de;) — 60.,%(a + de;),
so it suffices to prove ‘
= CIJ}(a + de;)

4 < —60,. &’ e;).
=@ (a t oe) © Ontylatoe)

Here, 0., @}(a + de;) = aziq)jc(a + de;), and it is non-positive by Lemma so it suffices to

prove
1

1- CIJ}(a + de;)

<4,

which is true since <I>§c(a +de;) < <I>§c(a) < 1-— % by assumption. O

Remark. The inequality A )
@{1_6Zi)f(a +de;) < @‘}(a)

ensures that the condition @1}' (a) + % < 1 is preserved under the transformation
z— z+0e;, f—(1-0,)f,

so that we can iterate Lemma B.21]

Finally, we can prove the bound that we have anticipated since the beginning of Section [3.3

Lemma 3.22. @ If Ay,---, A, are positive semi-definite self-adjoint m by m matrices, and

S A; = Itr A; < g, then ((14+/2)2, (14+/€)%, - -, (14+/2)?) lies above all zeros of p(z1, 22, - , 2p) =
(IL(1 = 92,)) det(32; ziAi).-

Remark. Comparing with what we want at the beginning of Section € corresponds to
which can be large.

T
2

Proof. Let f(z1,-+,2n) = det(>; z;4;). For any t > 0, (¢,t,t,--- ,t) is above all zeros of f (if
z; > t for all 4, then 3" z;A; = tI > 0), so if we have some ¢ > 0 such that

: 1
Py(t,t, ) + 5 <1

for all 4, then we can iterate Lemma on each coordinate to show that (t+d,t+9,--- ,t+0)
is above all zeros of p = ([[';(1 —9,,)) f-

To compute @?(t,t, <+ ,t) (WLOG i = 1), note that f(t—h,t,--- ,t) = det(—hA1 +t(>; Ai)) =
det (tI — hA;) = h™det (£1 — A1), so f(t — h,t,--- ,t) = 0 if and only if } is some eigenvalue
Ai(A1), so the corresponding values of h are hy, = m So we have

L0 ftt ) = 1 = M(Ar)  tr(Ay) e
(b}(t’t?”.’t)_ f(t7t7"'7t) _%:Fk_zk: t B t S% (*)

Now we have shown that for any ¢,6 > 0 such that $ + % <1, (t+0,---,t+0) is above all
zeros of p. It remains to minimise ¢ 4+ ¢ to obtain a good upper bound. By Cauchy—Schwarz,
t4+0>(t+6)(+3) > (vVe+1)% and equality can be attained. O

"6MSS15b|, Theorem 5.1.
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Remark. (x) is why we need tr(4;) < e. Our failed attempt only used the fact that the roots
of g(z1) = f(z1,t,t,--- ,t) satisfies A\g(g) < 0, i.e. hy >t in the proof above. The bound this
gives is

“J 3

UG |
1
Dp(t,t,- Z S
but the bound we want must not depend on the dimension m.

Summarising;:

Theorem 3.23 (Marcus—Spielman—Srivastava 2015). m For every ¢ > 0, if independent ran-
dom vectors v; € C™ (taking finitely many possible values) satisfies > ; E(v;v}) = I,, and
E(||vi||?) < e, then with non-zero probability we have

< (146

Proof. By Lemma there is non-zero probability that

() =2 (o (o))

As we have mentioned at the beginning of Section a bound like Lemma |3.22 corresponds to
a bound of \; (Ex (3.%; v;v})), so the right hand side is at most (1 + /). O

Remark. To prove Aim and therefore Theorem [3.3] it suffices that the right hand side is
€ 4 o(e) for sufficiently large €, and we do not care about small ¢

Proof of Aim[3.15 Fix ¢’ > 0. After rescaling we have Y7 E(v;v}) = I,,,/» and E(||lvi||*) = z
so if we take ¢ = § in Theorem we have with non-zero probability,

2 /
T 1 1+¢

< —) ==
_<1+\/g> 2T+0(r)< 5 r

for sufficiently large r, as required. O

4 Beyond This Essay

We have seen how the simply idea of Lemma [1.11| gives us a powerful new method. This
essay only covers some applications of the particular case of mixed characteristic polynomials
(Lemma [1.23)), but interlacing families do not have to be in this form. For example, [MSS15¢]
used an interlacing family that comes from the expected characteristic polynomial of a sum of
the form Y; P, A; P! (A; being fixed symmetric matrices and P; random permutation matrices)
to show existence of bipartite Ramanujan graphs (allowing repeated edges) of any degree d
and 2n vertices for any n. It would be interesting to find other combinatorial problems where
interlacing families arise.

From a computational perspective, [MSS15a] noted that their proof (Section [2|) of the existence
of Ramanujan graphs does not give a polynomial time algorithm to build such graphs, because
the first step would be to compute the matching polynomial ug, but its lowest term is the number

"IMSS15b, Theorem 1.4.
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of perfect matchings on GG, which is a #P-complete problem@ so there is no known polynomial
time algorithm (as any such algorithm will imply P = NP). Nonetheless, based on [MSS15¢|,
[Coh16| gave a polynomial time algorithm that builds a larger class of bipartite Ramanujan
graphs than described in Section

One might also investigate the quantitative version of Aim or its equivalent formulations
such as the diagonal % version in Lemma i.e. to get more precise bounds on how large r
needs to be for fixed €. For example, if we work out the details in Sectio then we would have

2
the bound || Ps,QPs,|| < (\/g + \/g) in the context of Lemma |3.13(2)

In comparison, [RL20], which also uses the interlacing families method but with a generalisation

2
of the characteristic polynomial, gives a bound of (\/g + 4/ % — 2(r1_1)) for r > 3
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