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§0 Introduction

Question 0.1. What do we mean by an infinite game?

Economists think this means a game where players have infinite choices. Some thinks
it means an infinite sequence of finite games.

Definition 0.2 (Infinite games). An infinite game is one that has infinite length, two
players, zero sum, perfect information, and perfect recall.

Definition 0.3. A game has infinite length if plays are infinite sequences of moves.
(So any finite segment does not necessarily tell useful properties.)

We require two players because there are three player games in which no individual
can force a win but only coalitions can, e.g. one in which III decides whether I or II wins.
(Henceforth I is almost never a pronoun.)

Zero sum usually means x + y = 0 for all utility entries (x, y), but here we mean
something stronger: we only look at win-lose games, i.e. the utilities are (+1,−1) or
(−1,+1).

Example 0.4 (Non-zero sum)

Stag hunt
II

I
2,2 0,1
1,0 1,1

Prisoners’ dilemma
II

I
2,2 0,1
1,0 1,1

Battle of the sexes
II

I
3,2 1,1
0,0 2,3

II

I
1,1 0,0
0,0 1,1

These require coordination and cooperation.

We look at win-lose games so we can think of the payoff as set

A = {x : player I gets 1 if the game has play x}.

Definition 0.5 (Perfect info). At any point in the game, players know everything that
happens.

Example 0.6 (Non-perfect info)

In a card game, I can make the move (i.e. transition between game states)

(Hand1 = ♣2♣3, Hand2 = ♥2♥3) 7→ (♣2 in hand +♣3 played, Hand2)

but I do not know Hand2 so I do not know which move I has made.

Definition 0.7 (perfect recall). Players recall everything that happened, with unbounded
memory.

Both perfect info and perfect recall will be encoded in our notion of strategy.
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Fact 0.8 (history). Application of set theory to the theory of chess (Zermelo 1913) uses
näıve set theory to show that either black or white has an at-least-drawing strategy.

In Poland Lwów (now Lviv in Ukraine) 1930/40s (this period has large influence
including Polish space in topology) was Scottish Café, where there was a notebook
Scottish Book. Banach, Mazur, Ulam et al wrote problems, solutions, and ideas in it, and
the notebook was only published in 1957. Some ideas includes

Inf Games←→ Topology + Analysis.

E.g. we have games that characterise the Baire property, Lebesgue measurability, etc.
Gale and Stewart (1953) reinvented inf games.
In 1960, Mycielski visited California to meet Blackwell (of whom you have heard in IB

Stats) et al at Berkeley, and proposed the Axiom of Determinacy AD (then a.k.a. Axiom
of Determinateness) as an alternative to (i.e. contradicts) the Axiom of Choice AC.

Then set theory is involved. Solovay worked on this, and in the late 1960s to 1980s,
AD become a big area of set theory.

Definition 0.9 (Infinite games). Let M be the set of moves. We play by moving
alternatingly, i.e. I plays an element of M , then II, then I, and so on.

I m0 m2 · · ·
II m1 m3

We call finite sequence in M positions (i.e. ∈ M<ω), and infinite sequences plays
(i.e. ∈Mω).
A ⊆Mω is the payoff set. The game G(A) is one s.t. I wins if m = (m0,m1, · · · ) ∈ A

and otherwise II wins.

Question 0.10. What if we have different rules for different players?

We shall see that the variant G(A;T ) of such games is equiv to one in the general form
G(A), i.e. ∀A, T, we can find AT s.t. G(A;T ) is the same game as G(AT ).

Definition 0.11 (Strategy). A strategy is σ : M<ω →M . “from position to moves”
If σ, τ are strats, then we can define by recursion a play σ ∗ τ (“ σ against τ”) as

follows:
If σ ∗ τ �n is defined (i.e. we already know the 0, 1, · · · , n− 1 -th moves), then define

σ ∗ τ(n) =

{
σ(σ ∗ τ �n) if n is even,

τ(σ ∗ τ �n) if n is odd.

σ is winning for I in G(A) if ∀τ, σ ∗ τ ∈ A. Simly τ is winning for II in G(A) if
∀σ, σ ∗ τ 6∈ A.

Remark 0.12. Only half of σ is useful for a player but there is no harm in having
answers for questions that you will never ask.

P(Mω) is the set of all games.

Question 0.13. Is there any M s.t. P(Mω) has a game that has no win strat for I and
no win strat for II?
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§1 Bonus: Combinatorial Games

This section is by guest lecturer Prof Imre Leader and is non-examinable.

Definition 1.1. Let X be a set (infinite or otherwise), and let H ⊆ P(X) be a collection
of finite subsets of X (e.g. winning lines in noughts-and-crosses.)

The combinatorial game/hypergraph game on H has two players I and II, who
take turns to claim unclaimed points in X, with I first. The first player to make a set in
H wins. If the game ends and no one wins, it is a draw. The game ends if the board is
full for X finite, or if players generate a sequence of length ω with no win for X infinite.

Remark 1.2. This is not kombo games in the Conway sense (nim, hackenbush etc. See
Winning Ways for your Mathematical Plays)

Example 1.3

Some kombo games are:

1. noughts-and-crosses, aka tic-tac-toe in AmE. Or on 3× 3× 3 or 4× 4× 4 cubes.

2. Binary tree game Bn. Let X be the set of nodes on a perfect binary tree of
depth n, H be the set of all paths from root to a leaf. I wins.

3. Ramsey game (KN ,KS). X = E(KN ), H is the set of all copies of KS in KN .

4. n-in-a-row. X = Z2, H is the set of n consecutive points, horizontal, vertical,
or diagonal.

In any hypergraph game, exactly one of the following holds:

• I has win strat,

• II has win strat,

• both have drawing strat.

This is trivial if X finite by backtracking from the leaves of the game tree.

Proposition 1.4

Suppose I has no win strat, then II has a draw strat (s.t. II either draws or wins).

Proof. II draws or wins as follows: I plays some move x0, then the current position is
not forced win for I, so II has some move x2 after which I does not have a forced win.
Play this move. Repeat.

We obtain a play of the game in which at each time I does not have a win strat, so in
particular there is no time when I wins by completing a winning line. Winning lines are
finite, so at the end of this play, I does not complete a winning line.

Remark 1.5. Our games are open games where if you win, then you have some time
when you know you win.
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Proposition 1.6 (Strategy stealing)

No kombo game is II win.

Proof. Suppose II has a win strat τ . We shall win as I, which is a contradiction.
Play some x0 and pretend we have not played there and follows the strat τ of II. If τ

calls us to take x0, then we instead take x1 and forget, and remember x0. Repeat.
Then in the game in mind, we win first, and so on the board we win as the extra move

cannot hurt us.

Remark 1.7. We have:

1. Proof is completely non-constructive.

2. Equivly, if the game has no draw, then it is a I win.

Example 1.8

Recall Example 1.3. Which are I wins?

1. Noughts-and-crosses is draw, 3× 3× 3 is I win (easy), 4× 4× 4 is I win (by
computer only, no human strat known).

2. Binary tree games. I wins.

3. Ramsey games. No draw if N ≥ R(s), the Ramsey number, so I wins. We
know

√
2
s ≤ R(s) ≤ 4s. In the case S = 3, the 4-game, I wins easily: claim

edge 12, then II claims 13 or 34 up to relabeling. I claims 15. II is forced to
respond by 25. I claims 16 and has two potential K3 in one move: 126 and
156.

In the case S = 4, no win strat is known. This is hard because we must make
KS and block opponent. Just like chess, we do not win by making checks as
much as possible, but by building up subtle attacks.

4. n-in-a-row. n ≥ 8 is draw. n ≤ 4 is I win.

Warning 1.9. A game can be I win but not in bounded time, even if winning lines have
bounded size and degrees are bounded, i.e. each point is in ≤ K winning lines for some
const K.

Example 1.10

Consider the hypergraph on [2n+1], with edge set {ek = {2k−1, 2k, 2k+1} : k ∈ [n]}.
Call this game Tn. If II makes two consecutive moves by claiming 0 and 2, then I is
forced to claim 1, and then II can claim 4, and I is forced to claim 3 and so on.

Let the game be G = B4 + T1 + T2 + · · · , where the sum means in each turn a
player chooses exactly one summand and make a move therein, and wins by winning
one of the summand. Can check I wins but not in bounded time.

Problem 1.11 (Open).

Q1. Could 5-in-a-row be I win but not in bounded time?
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Q2. Known (KN ,KS) is I win for large N . Is (Kω,KS) I win? Note that it is possible
for a game to be a draw even if it is I win on all finite subboards, e.g. B4 + {∗, ∗}+
{∗, ∗}+ · · · , where {∗, ∗} is the game in which one wins by taking both points.

Q3. Is (KN ,KS) win in bounded time for N vary and S fixed?

Exercise 1.12. Show that Q2 above is equivalent to Q3.

§2 Basics

§2.1 Strategies and Trees

Definition 2.1. A ⊆Mω is determined if either I or II has a win strat in G(A).

Definition 2.2. A set T ⊆ M<ω is a tree if it is closed under initial segments, i.e. if
p ∈ T and q ⊆ p, q ∈M<ω, then q ∈ T .

To justify our q ⊆ p notation, p ∈M<ω means p : U →M for some m ∈ ω, so p is a
set p = {(0,m0), (1,m1), · · · , (u− 1,mu−1)}.

Definition 2.3. If s ∈M<ω and x ∈Mω, then we write sx for the concatenation

sx(n) =

{
s(n), if u < |s|
x(n− |s|), if u ≥ |s|.

If s is a seq of length 1 with element m, then we write mx for sx.

We use the usual (by def, set-theoretic) notation for restriction

x�n = {(k, x(k)) ∈ x : k < n},

so if x ∈Mω, then x�n ∈M<ω. If s ∈M<ω, x ∈Mω, then sx� |s| = s.
A tree here has a uniquely identified root ∅ unlike graph-theoretic trees. For M = 2 =
{0, 1}, the whole tree M<ω looks like:

∅

0

00
...

01
...

1

10
...

11
...

Definition 2.4. If T is a tree, then we say x ∈ Mω is a branch through T if
∀n ∈ ω, x�n ∈ T .

We write [T ] = {x ∈Mω : x is a branch through T} for the set of branches through
T .

Remark 2.5. If x is not a branch of T , then we know after finite time that it is not.

Definition 2.6. If σ is a strat, then we shall def the I-strategic tree T I
σ of σ and the

II-strategic tree T II
σ of σ.
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Assume we play as I with σ, then we start with σ(∅), and II has many moves, and we
have a unique response, so we def p ∈ T I

σ if ∀n s.t. 2n ∈ dom p, we have p(2n) = σ(p�2n).
Simly, p ∈ T II

σ iff ∀n s.t. 2n+ 1 ∈ dom p, we have p(2n+ 1) = σ(p�2n+ 1).
σ ∗ τ has the property that ∀n,

σ ∗ τ �n ∈ T I
σ, σ ∗ τ �n ∈ T II

τ

by def and induction. So σ ∗ τ ∈ [T I
σ]∩ [T II

τ ]. In fact it is the only element (easy question
on Sheet 1).

Definition 2.7. Fix x : ω →M and define the blindfolded strategies σx and τx by:

σx(p) = x(n) if |p| = 2n,

τx(p) = x(n) if |p| = 2n+ 1.

I.e. the players only know which turn but does not sense other things about the position.

Definition 2.8. (I-part and II-part) If x ∈ Mω, then xI(n) = x(2n), and xII(n) =
x(2n+ 1). So (σ ∗ τx)II = x, (σx ∗ τ)I = x.

Proposition 2.9

[T I
σ] = {σ ∗ τ : τ strat}.

Proof. We have seen ⊇. Conversely, if x ∈ [T I
σ], then let z = xII, and consider τz

blindfolded. Then σ ∗ τz = x by induction.

Proposition 2.10

σ is w.s. for I iff [T I
σ] ⊆ A, and simly τ is w.s. for II iff [T II

τ ] ⊆Mω \A.

So we may have ugly sets that is a I win. I-win is a local property that as long as A
includes the branch set of a strat tree, then G(A) is I-win.

Theorem 2.11

If |M | ≥ 2, then

1. If A is a win for I, then |A| ≥ 2ℵ0 .

2. If A is a win for II, then |Mω \A| ≥ 2ℵ0 .

Proof. By the previous observation, WTP
∣∣[T I

σ

]∣∣ ≥ 2ℵ0 . We shall construct an injection
from 2ω to

[
T I
σ

]
. Let m0 6= m1 ∈M . If x ∈ 2ω, then define

x̄ : ω →M

x̄(n) = mx(n).

Now define

f : 2ω →
[
T I
σ

]
f(x) = σ ∗ τx.

This is an injection since II makes different moves in σ ∗ τx and σ ∗ τy.
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We have seen a necessary condition for I-win and II-win, but this condition is trivial if
we look at the disjunction (i.e. this tells us nothing about determined sets), because ∀A,
either |A| or |Mω \A| is ≥ 2ℵ0 .

Theorem 2.12

If |M | ≥ 2 and A ctble, then II wins. If |M | ≥ 2 and Mω \A ctble, then I wins.

Proof. If A ctble, then write A = {au : u < ω}. Use a diagonal argument, i.e. as II, we
pick

d(i) =

{
m0, if ai(2i+ 1) 6= m0,

m1, o/w.

Then the blindfolded τd wins against any σ for I.

§2.2 Zermelo’s Theorem and the Gale–Stewart Theorem

This leaves the question of sets A with both A and Mω \A unctble. |A| is not a promistion
criterion. We need to look at something else.

Definition 2.13. G(A) is finite (as an infitite game) if ∃n ≤ ω s.t. whether x ∈ A
depends only on x�n, i.e. ∀x, y with x�n = y �n, x ∈ A ⇐⇒ y ∈ A. “You can continue
to play but that is a waste of an infinite amount of time.”

Finite games allows for backwards induction. Human rationality seems to work
on this by foreseeing possible outcomes but this is rubbish because computation is
exponentially expensive.

Theorem 2.14 (Zermelo’s, retrospectively in his paper for chess)

Finite games are determined.

Proof. Label the game tree by recursion. Labels are I and II. At time n (this is a
horizontal line in the game tree, and is orange on blackboard), we know who wins. If

|p| = n, then label p by

{
I, if ∀x, p ⊆ x =⇒ x ∈ A,
II, if ∀x, p ⊆ x =⇒ x 6∈ A.

By induction, assume all pos of

length k + 1 have been labelled, and now we label those of length k. If k even, then I
plays at that pos p.

Case 1. If ∃ successor q of length k + 1 s.t. q is labelled I, then label p by I.
Case 2. If ∀ successor q of length k + 1, q is labelled II, then label p by II.
Simly for k odd. This produces a total labelling ` : M<ω → {I, II} by extending below

the orange line in the obvious way.

Claim 2.15. If `(∅) = I, then I wins, and vice versa.

Proof. The win strat is “Stay on you label”.

Remark 2.16. A.k.a. Zermelo’s trivial observation (by Leader).

8
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Remark 2.17. We might need the Axiom of Ctble Choice CC to get from a mental
recipe to a strat (which is a function) even in the simplest case where A = Mω. The
proof specifies a subtree of label I (called quasi-strategy). If we want to extract a
genuine strategy, then we need some way of picking σ(p). This is in particular the case if
AC holds or M is well-ordered (e.g. M = ω).

Chess is not of the form G(A) because there are draws. Instead we take
A = {x : ∃n s.t. x�n is winning for white}, i.e. any draw is considered a black win.

Definition 2.18. A is finitary if there is a set S ⊆M<ω of positions s.t. x ∈ A ⇐⇒
∃n, x�n ∈ S.

This means wins for I are determined after finitely many steps, but with no bounds on
the lengths, and not necessarily so for II.

Theorem 2.19 (Gale–Stewart, but known by the Polish e.g. Banach, Ulam et al)

Finitary games are determined.

Proof. Now the orange line is broken into pieces and some branch does not cross the line
at all. IDEA: throw away II for now. We do a partial labelling

` : M<ω 99K {I}

and label everything else II and hope it works.
We do this by recursion as before. Write `0(p) = I iff ∃n s.t. p�n ∈ S.
Recursion step
Case 1a. If |p| even, and all successors of p are not labelled, then not label.
Case 1b. If |p| even, and there is a successor labelled I, then label I.
Case 2a. If |p| odd, and all successors labelled I, then label I.
Case 2b. If |p| odd, and there is a successor not labelled, then not label.
But we cannot assumn that all label statuses of the successors are already fixed. Def

`α+1 to be the extension of `α that labels previously unlabelled pos according to our
recursion step. If M is infinite, there might be pos p s.t. ∀q successor of p, ∃n s.t.
`n(q) = I, but there is no N s.t. in step N all succ are labelled.

· · ·

. . .

p

So we need transfinite induction. For λ non-zero limit, let

`λ =
⋃
α<λ

`α

WTP recursion ends and hope comes true. Say that an ordinal α is a fixed point of
the G–S labelling if `α+1 = `α.

Claim 2.20. There is a fixed point, i.e. recursion ends.

9
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Proof. Let Dα = dom(`α+1) \ dom(`α). If α 6= β, then Dα ∩Dβ = ∅. Also, Dα = ∅ iff
α is a fixed point. So if α is not a fixed point, then

D : α→ P(M<ω)

β 7→ Dβ

is an injection (images are non-empty and disjoint), but by Hartogs’ lemma, ∀X, ∃α
ordinal (called Hartogs’ ℵ of X) s.t. α does not inject to X, so α for P(M<ω) is a fixed
point.

Def `∗(p) = I iff ∃β < α s.t. `β(p) = I, and def

`(p) =

{
I, if p ∈ dom(`∗),

II, o/w.

If p ∈ dom(`∗), let age(p) be the least ord γ s.t. p ∈ dom(`γ).

Claim 2.21. If `(∅) = I, then I has a w.s. and vice versa.

Proof. The win strat for II is “Stay on label II ”. Suppose x ∈Mω follows this strat, then
∀n, `(x�n) = II, so `(x�n) 6= I, so `(x�n) 6∈ S. This says x 6∈ A.

The win strat for I is “Stay on label I and strictly decrease age”. Suppose x ∈ Mω

follows this strat, then αn = age(x �n), n ≤ ω is a seq of strictly decreasing ords, so it
must hit 0, i.e. ∃m s.t. age(x�m) = 0, so `0(x�m) = I, so ∃n ≤ m, x�n ∈ S by def of
`0. Hence x ∈ A.

This gives Theorem 2.19.

We make a small detour to the necessity of transfinite recursion in the proof. Recall
[T ] is the set of branches through T .

Definition 2.22. T is well-founded (wellfdd) if [T ] = ∅.

Lemma 2.23 (König’s)

If M is finite, then any wellfdd tree on M is finite.

Proof. If T is infinite, then one subtree is infinite. Continue going down to obtain a
branch.

· · ·

. . .

p

If M is infinite, then König’s lem does not hold. Recall the example
below which we have seen. This is wellfdd but not finite.

Definition 2.24. The height of a node is

ht(p) =

{
0, if p is a leaf,

sup{ht(q) + 1 : q is an immediate successor of p}, o/w.

Say ht(T ) = ht(∅), i.e. the height of the root.

∀α < |M |+ , there is a wellfdd tree on M with ht(T ) = α. E.g. given a tree of height
ω, just add one new vertex above the root to obtain ω + 1. This is the reason that we
need transifinite induction in the proof.

10
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Theorem 2.25

Assume AC, then there are non-determined sets if |M | ≥ 2.

Proof. For notational convenience we shall only do M = ω, other cases being same. We
will diagonal-argue against all strategic trees.

If T is a strat tree, then T ⊆ ω<ω, so T is ctble, so |[T ]| ≤ 2ℵ0 . But we have seen ≥ in
the proof of Theorem 2.11. Hence |[T ]| = 2ℵ0 .

How many strat trees? If x 6= y ∈ ωω, then T I
σx 6= T I

σy , so there are at least 2ℵ0 many.

But T ⊆ ω<ω, so there are exactly 2ℵ0 .
We shall def by recursion Aα, Bα ⊆ ωω s.t. |Aα| = |Bα| = |α|. Start with A0 = B0 = ∅,

then if Aα and Bα are defined, then consider the α-th strat tree (we list them as Tα,
α < 2ℵ0).

Since |[Tα]| = 2ℵ0 ,
|[Tα] \ (Aα ∪Bα)| = 2ℵ0 .

By AC, pick aα 6= bα ∈ [Tα] \ (Aα ∪Bα), and let

Aα+1 = Aα ∪ {aα},
Bα+1 = Bα ∪ {bα}.

This satisfies |Aα+1| = |Bα+1| = |α + 1|, and
⋃
αAα is disjoint from

⋃
αBα. Def

A =
⋃
α<2ℵ0 Aα.

Claim 2.26. A is not determined.

Proof. If it is, then either there is a I-strat tree Tα s.t. [Tα] ⊆ A, or a II-strat tree Tβ s.t.
[Tβ] ⊆ ωω \ A. WLOG [Tα] ⊆ A, then bα ∈ [Tα] and bα ∈ Bα+1. But Bα+1 is disjoint
from A, so bα is not in A, contradiction.

§3 The Baire Space and Pointclasses

We hoped that “Every simple set is determined”. Our first attempt is a criterion based
on size, but not very helpful. And by AC, there are non-determined sets.

Second attempt: Def simplicity by “topological complexity”. For now fix M = ω.
(This is not an innocent choice: something really depends on this, e.g. well-orderedness,
but it is a natural choice.)
ωω is a product

∏
n∈ω ω, so it has a natural (product) topology inherited from ω.

Besides, for p ∈ ω<ω, we def [p] = {x ∈ ωω : p ⊆ x}. These cylinder sets form a base of a
topology. So A ⊆ ωω is open iff ∃S ⊆ ω<ω s.t. A =

⋃
p∈S [p]. In other words, A is open

iff A is finitary.

11
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Proposition 3.1 (properties of ωω)

1. If we pick the discrete topology on ω, then the topology above is the prod
topology on ωω, i.e. the weakest s.t. the projections πi : ωω → ω, x 7→ xi are
cts.

2. If x 6= y ∈ ωω, then we define d(x, y) = 2−n where n is the min number s.t.
x�n 6= y �n, and d(x, x) = 0. This is a metric on ωω, and the balls are

B 1
2n

= {y : y �n = x�n} = [x�n],

which are precisely the basic open sets above, so ωω is a metric space.

3. Any [p] is also closed, i.e. they are clopen, because

ωω \ [p] =
⋃
q 6=p
|q|=|p|

[q].

Such spaces (with a base of clopen sets) are called zero-dimensional, and are
totally disconnected, i.e. the only connected subsets are ∅ (? depending
on your def) and singletons.

4. ωω is homeomorphic to R \Q.

Proof. x ∈ ωω 7→ [x0 +1, x1 +1, · · · ] (continued fractions) is a homeomorphism
from ωω to (1,+∞) \Q.

“Uses maths not [sic] taught these days but were taught in the 19th century.”

5. Convergence can be described via metric:

(xn)→ x ⇐⇒ ∀k, ∃N s.t. ∀n > N, d(xn, x) < 2−k, i.e. xn �k = x�k.

So xn agrees with x along longer and longer prefixes.

Let’s look at closed sets. Suppose T is a tree on ω.

Lemma 3.2

[T ] is closed.

Proof. Suppose xn ∈ [T ], and (xn)→ x. Then ∀k, xn �k ∈ T, and ∀k, ∃n s.t. xn �k =
x�k, so x�k ∈ T , so x ∈ [T ].

If A ⊆ ωω, then def TA = {x�n : x ∈ A and n ∈ ω}. So TA is a tree, i.e. closed under
initial segments.

By the lem, [TA] is closed. If x ∈ A, then x ∈ [TA], so A ⊆ [TA].

Lemma 3.3

If A is closed, then A = [TA].

12
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Proof. Suppose z ∈ [TA], then ∀n, z �n ∈ TA. So ∀n, ∃xn ∈ A s.t. z �n = xn �n. Now
(xn)→ z, so z ∈ A.

This says [TA] = Cl(A) is the closure.

Corollary 3.4 (Tree representation thm of closed sets)

A is closed iff ∃T tree s.t. A = [T ].

Easy but is “mother of all tree rep thms”.

§3.1 The Borel Hierarchy

Question 3.5. How many open sets are there?

We have ctbly many basic open sets, so at most 2ℵ0 open sets (and in fact precisely
that many).

Question 3.6. How many closed sets?

Same as the open sets (by taking complements). Alternatively, as many as trees, so
2ℵ0 .

Gale–Stewart shows that every open set is determined, but these are few: we have
|P(ωω)| = 22

ℵ0 choices for the payoff set A.
On Sheet 1, we shall show that difference A \ B of open sets is determined, by the

modified proof of Gale–Stewart. But there are other operations.

Definition 3.7. A σ-algebra is a set family closed under complementation and ctble
union.

The family of open sets are closed under ctble union, but not necessarily under
complementation (unless open = closed). Closed sets are simly closed under ctble
intersection.

Definition 3.8. Closure of open sets under ctble intersections is Gδ, and the σ-closure
thereof is Gδσ etc. Simly, closure of closed sets under ctble union is Fσ, and the δ-closure
thereof is Fσδ etc.

Definition 3.9 (Borel hierarchy). The Borel σ-algebra is the smallest σ-alg containing
the open sets. We can analyse this in the form of a hierarchy (Borel hierarchy).

Fix a topological space X. Def:

Σ0
1 = {A ⊆ X : A open}.

If Σ0
ξ is defined, then def

Π0
ξ = {X \A : A ∈ Σ0

ξ}.

If ∀α < ξ, Π0
α is defined, then

Σ0
ξ =

⋃
n∈ω

An : ∀n, An ∈
⋃
α<ξ

Π0
α

 .

Also write
∆0
ξ = Σ0

ξ ∩Π0
ξ .

13
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This is good notation when we go beyond ω iterations, because we do not need to
write G(δσδ··· )δσ etc.

∀α, Σ0
α(X) ⊆ P(X), so by Replacement, this has a fixed point (by Hartogs’ lem), i.e.

Σ0
α = Π0

α for some α.

Question 3.10. Is this a ‘hierarchy’ in the sense that Σ0
ξ ⊆ Σ0

η for ξ ≤ η?

Question 3.11 (warm up). Is every open set a ctble union of closed sets?

In ωω, this follows from 0-dimensionality: every open set is a ctble union of basic
clopen sets. In R, it still works but only with a different proof. In general, this is FALSE!

But anyway Σ0
1(ωω) ⊆ Σ0

2(ωω). We also get Π0
ξ ⊆ Σ0

ξ+1 for free, so Π0
ξ ⊆ Σ0

η ∀ξ < η.

By taking complements, this also says Σ0
ξ ⊆ Π0

ξ+1, so Σ0
ξ ⊆ Π0

η ∀ξ < η. It remains

to show Σ0
ξ ⊆ Σ0

η for ξ < η. We use induction. Suppose ∀β < α < η, Σ0
β ⊆ Σ0

α, then

also Π0
β ⊆ Π0

α.

Now take A ∈ Σ0
ξ . Then

A =
⋃
n∈ω

An, An ∈ Π0
αn

for some αn < ξ. Since ξ < η, we have ∀n, αn < η, so A ∈ Σ0
η.

Remark 3.12. We are only using the def but not the induction hypothesis, i.e. this
proof is badly written.

Therefore Π0
ξ ∪Σ0

ξ ⊆ Σ0
ξ+1, so taking complements Σ0

ξ ∪Π0
ξ ⊆ Π0

ξ+1, so

Σ0
ξ ∪Π0

ξ ⊆∆0
ξ+1.

In diagram this looks like

Σ0
1 Σ0

2 · · · Σ0
ω

∆0
1 ∆0

2 ∆0
3 ∆0

ω ∆0
ω+1 · · ·

Π0
1 Π0

2 · · · Π0
ω

6=

We have seen that this stops at some α, and we say that “the hierarchy collapses”.

Proposition 3.13

ℵ1 is an upper bound of the stopping ordinal, i.e.

Σ0
ℵ1 =

⋃
α<ℵ1

Σ0
α =

⋃
α<ℵ1

Π0
α.

Proof. We already know ⊇. WTP ⊆. Take A ∈ Σ0
ℵ1 . By def, A = ∪n<ωAn, where

An ∈ Π0
αn and αn < ℵ1.

By regularity of ℵ1, α =
⋃
n∈ω αn < ℵ1.

Remark 3.14. Regularity of ℵ1 is not a thm of ZF, but of ZF + ACω(ωω), i.e. we need
choice from ω many subsets of ωω.

Sometimes the hierarchy collapses much earlier. Let X be a ctble metric space, then
∀x ∈ X, {x} ∈ Π0

1(X). So A =
⋃
x∈A{x} is a ctble union of closed sets, so A ∈ Σ0

2. This
says

14
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Proposition 3.15

If X ctble, then P(X) = Borel(X) = ∆0
2(X).

Question 3.16. In ωω, what is a Σ0
2 set that is neither open nor closed?

Paradigmatic: Take

A = {x ∈ ωω : ∃n ∀k ≥ n, x(k) = 0},

the set of eventually zero seqs.
A ∈ Σ0

2.

A =
⋃
n∈ω

An for An = {x : ∀k ≥ n, x(k) = 0}.

Here An is the branch set of a tree, whence closed.
A not open. It cannot contain any basic open sets.
A not closed. Take xn = 111 · · · 1︸ ︷︷ ︸

n

0 · · · ∈ An, then (xn)→ 1, but 1 6∈ A.

Remark 3.17. We spend a long time proving ∆0
2 ) ∆0

1. But Lent term is too short to
repeat this up to ℵ1. We need another technique to prove a non-collapsing thm, namely
the technique of universal sets.

Every Σ0
1 is determined by Gale–Stewart.

Σ0
2? This cannot be done by constructive labelling: after n steps in G(A) where

A = {x ∈ ωω : ∃n ∀k ≥ n, x(k) = 0}, the game still looks the same. Yet II wins G(A)
by playing 1 infinitely often.

Fact 3.18 (History of Borel determinacy).

a. 1953, Σ0
1, Gale–Stewart.

b. 1955, Σ0
2, Wolfe.

c. 1963, Σ0
3, Davis (controversy over Polish work 1960–1961, but usually people cite

Davis).

d. 1972, Σ0
4, Paris used set theoretic instead of kombo arguments.

e. 1970–1971, H. Friedman showed for n large, determinacy of Σ0
n-sets cannot be

proved without “substantial” set theory.

f. 1975, Borel alg, Martin (usually cited when people apply inf games, but overkill
because Σ0

4 are already very complex to actually show up in application.)

§3.2 Universal Sets

Definition 3.19 (Universal sets). Let X,Y be topological spaces, Γ be Σ0
α or Π0

α or ∆0
α.

Think of Γ(Y ) as being parametrised by elements of X. We call U ⊆ X ×Y universal if

(i) U is Γ(X × Y ),

(ii) ∀A ∈ Γ(Y ), ∃x ∈ X, s.t.

A = Ux = {y ∈ Y : (x, y) ∈ U}.

This is called a section.

15
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Definition 3.20. An assignment Γ of subsets of a topological space X to X is called
a pointclass, e.g. X 7→ {U ⊆ X : U open in X}. We call a pointclass boldface if it
is closed under cts preimage, i.e. if f : X → Y is cts and A ∈ Γ(Y ), then the pullback
f−1(A) ∈ Γ(X).

Remark 3.21. Historically boldface are typeset in boldface and markings on correction
sheets A means italics and

::
A means boldface.

Definition 3.22. Γ is coherent if ∀X ∈ Γ(Y ) with the subspace tplgy on X, we have
Γ(X) = {A ∩X : A ∈ Γ(Y )}.

Also there are several closure properties whose meaning should be clear, e.g. closed
under complement, closed under ctble union.

Example 3.23 (pointclasses)

These are all boldface:

1. Σ0
ξ is closed under finite intersections, ctble unions, but in general not comple-

ments.

2. Π0
ξ is closed under fin unions, ctble intersections, but in general not comple-

ments.

3. ∆0
ξ is closed under fin unions or intersections, and complements, but in general

not ctble unions or intersections.

Σ0
ξ and Π0

ξ are coherent.

We shall make a short excursion by looking in detail at “Σ0
2 is closed under ctble

unions”.

Proof. Let A =
⋃
n∈ω An, An ∈ Σ0

2. Find Cnm s.t. An =
⋃
m∈ω Cnm, Cnm ∈ Π0

1.
Write

A =
⋃
n∈ω
m∈ω

Cnm,

which is a ctble union, so A ∈ Σ0
2.

Note that we have used a choice function to pick a representation An =
⋃
Cnm, as the

def of Σ0
2 only says the set of such representations is non-empty.

Without using AC, Σ0
2 ⊆ Π0

3, so A is a ctble union of Π0
3 sets, so A is definitely in Σ0

4.
There is a famous model (Feferman–Lévy) of ZF + ‘R is a ctble union of ctble sets’. In

this model, R =
⋃
n∈ω Cn, with Cn ⊆ R ctble, so ∀A ⊆ R,

A =
⋃
n∈ω

(A ∩ Cn),

and A ∩ Cn ⊆ Cn ctble, whence Σ0
2. Although this does not prove A ∈ Σ0

2, it proves
A ∈ Σ0

4, so A is Borel, so the F–L models has no Lebesgue non-measurable sets.
Recall Definition 3.19 of universal sets.
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Lemma 3.24 (universal set lemma)

Let Γ be a coherent boldface pointclass, X ⊆ Y s.t. X ∈ Γ(Y ), U be X-universal
for Γ. Then Γ is not closed under complements.

Proof. If X ⊆ Y , then some elements of X ×Y are elmts of X ×X, so we can diag-argue.
Consider x 7→ (x, x), X → X × Y . This is cts. So

{x ∈ X : (x, x) ∈ U} ∈ Γ(X) ∀U ∈ Γ

because this is the preimage of some boldface pointclass set.
Assume we have closure under complement, then

D = {x ∈ X : (x, x) 6∈ U} ∈ Γ(X)

because D = D ∩X ∈ Γ(Y ) and Γ is coherent. Universality gives some d s.t.

D = Ud = {y : (d, y) ∈ U}.

Now d ∈ Ud ⇐⇒ d ∈ D ⇐⇒ d 6∈ Ud, contradiction.

IDEA: If we can show for α < ℵ1, ∃X-universal set for Σ0
α, then the Boerl hierarchy

does not collapse.

Theorem 3.25 (universal set thm)

∃Uα ∈ ωω × ωω that is ωω-universal for Σ0
α.

Proof. Constunct by recursion. Look at α = 1. What is an open set? A ⊆ ωω is open iff
∃S ⊆ ω<ω s.t. x ∈ A ⇐⇒ ∃s ∈ S, s ⊆ x.

Fix a bijection s : ω → ω<ω. Then if B ⊆ ω, then B represents the open set
⋃
k∈B[s(k)],

and this exhausts all open sets.
Let now x ∈ ωω. Def Bx = {k ∈ ω : x(k) 6= 0} and Ax =

⋃
k∈Bx [s(k)]. Say (x, y) ∈ U

iff y ∈ Ax. Then we have a parametrisation of open sets, i.e. (ii) in the def of universality
is satisfied.
U satisfies (i). Suppose (x, y) ∈ U . To see that U is open, we shall find a basic open set

P s.t. (x, y) ∈ P ⊆ U . If (x, y) ∈ U , then y ∈ Ax =
⋃
k ∈ Bx[s(k)], so we have some k s.t.

x(k) 6= 0 and y ∈ [s(k)], so let m = |s(k)|, N = max(k+ 1,m). If (x′, y′)�N = (x, y)�N ,
then (x′, y′) ∈ U , so U is open.

Suppose U is ωω-universal for Σ0
α, then ωω × ωω \U is Π0

α, and if A ⊆ ωω is Π0
α, then

ωω \A is Σ0
α, so ∃x s.t. Ux = ωω \A, so

(ωω × ωω \ U)x = ωω \ Ux = A,

so ωω × ωω \ U is ωω-universal for Π0
α.

Now it remains the case of Σ0
α (α < ℵ1) and we can assume ∀β < α, ∃ ωω-universal

set Uβ for Π0
β.

A generic Σ0
α set is

⋃
n∈ω An for An ∈ Π0

βn , βn < α This means we have xn ∈ ωω s.t.

An =
(
Uβ
)
xn
. We need to encode these xn into an element of ωω. Consider x ∈ ωω. We

can split ω into infinitely many infinite sets (e.g. the columns of ω × ω, where we fix a
bijection b : ω × ω → ω). For each n, def the n-th subsequence (x)n by

(x)n(m) = x(b(n,m)).
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Now this is a natural bijection (ωω)ω to ωω. Moreover, x 7→ (x)n is cts ∀n, since finite
initial segments of (x)n depend only on finite initial segments of x.

Since α is ctble, find a surjective π : ω � α, s.t. for each β < α, there are infinitely
many n < ω s.t. π(n) = β. Let

U =
{

(x, y) : ∃n, ((x)n, y) ∈ Uπ(n)
}
.

Claim 3.26. This is universal for Σ0
α.

Proof. U is Σ0
α. Indeed

U =
⋃
n<ω

Vn where Vn =
{

(x, y) : ((x)n, y) ∈ Uπ(n)
}
,

which is the preimage of Uπ(n) under the cts map (x, y) 7→ ((x)n, y), and Uπ(n) ∈ Π0
π(n),

which is boldface, so Vn ∈ Π0
π(n), so U ∈ Σ0

α.

U is ωω-universal for Σ0
α. Take A =

⋃
n<ω An, where An ∈ Π0

ξn , ξn < α.
For each n, find kn s.t. π(kn) = ξn while requiring that kn are distinct. Find xn ∈ ωω

s.t.
(
U ξn

)
xn

= An. For each β < α, find some zβ s.t.
(
Uβ
)
zb

= ∅.
Def x s.t. (x)kn = xn, and (x)l = zπ(l) if l 6= kn ∀n. Now stare at the def of U to see

that Ux = A.

Remark 3.27. We heavily used AC, every time when we say “pick”, “find”, etc. But
this is necessary as we have seen that without AC, we could very well have every set Σ0

4,
in which case there is no universal Σ0

4-set.

§3.3 The Projective Hierarchy

We already discussed ZFC ` “every Borel set is determined” , where “discussed” means
“not proved because time is finite”.

Fact 3.28 (Lebesgue’s error). He famously claimed cts images of Borel sets are Borel
and used this to show that cts images of Borel sets are L-measurable. Indeed they are
L-measurable, but the claim was wrong.

Theorem 3.29 (Suslin 1917)

The class of all cts images of Borel sets is not closed under complementation. (But
the Borel algebra is, so they are not equal). This class is denoted by a (or the same
letter in some stranger unreproducible font(?))

If a is not closed under complement, then let ǎ (“a dual”) be {ωω \A : A ∈ a} and
ask whether it is closed under cts images.

Answer 3.30. NO.

So if a∗ is the closure of ǎ under cts images, then is it closed under complement? etc.
This is called the projective hierarchy. The order type of this hierarchy is just ω

because we cannot use transfinite recursion when we only have unary operations available
(taking cts images and complementation).
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Definition 3.31 (projections). Let C ⊆ ωω ×ωω. Then def pC = {x ∈ ωω : ∃y, (x, y) ∈
C} to be the projection into x-axis.

Remark 3.32. It is FALSE that pC is always simpler than C. Indeed if C is in the
projective hierarchy, then pC can be one step higher in the hierarchy.

All finite prods (ωω)n are homeomorphic to ωω: there is a homeomorphism ωω ×ωω →
(ω × ω)ω because ωω has the prod topology of the discrete tplgy on ω, but the discrete
tplgy does not care about which set it is on: if |M| = ℵ0, then Mω ∼= ωω. This gives us
tree representation lemma in all these spaces:

Lemma 3.33 (tree representation lemma)

C ⊆ ωω × ωω is closed iff ∃ T ⊆ (ω × ω)<ω tree s.t. C = [T ]. The same holds for
(ωω)n.

Definition 3.34. c : ω<ω → ω<ω is coherent if

(i) s ⊆ t =⇒ c(s) ⊆ c(t), and

(ii) if x ∈ ωω, then |c(x�n)| → ∞.

If c is coherent, then def fc : ωω → ωω by

fc(x) =
⋃
n∈ω

c(x�n).

By (i), they agree, and by (ii), the union is infinite, so fc is well-defined.

Lemma 3.35

f is cts iff ∃ coherent c s.t. f = fc.

Proof. Sheet 2.

Remark 3.36. This gives us a game representation of continuity. Def a game G(f):
roughly, I plays x and II have to play f(x) to win. Then f is cts ⇐⇒ II has win strat.
May be in Sheet 2.

Lemma 3.37

Let M be ctble, and T ⊆M<ω be a tree with [T ] 6= ∅. There there is a cts surjection
f : ωω → [T ].

Proof. Let s∅ be the first (i.e. closest to the root) splitting node of T . Consider
{m ∈M : s∅m ∈ T} which is ctble. So there is a surjection π∅ : ω →M∅. Recursively
do the same on each subtree.

Definition 3.38. A set A ⊆ ωω is called analytic. If there is C ⊆ ωω × ωω closed s.t.
A = pC = {y ∈ ωω : ∃x, (x, y) ∈ C}.
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Proposition 3.39

Equivalent are:

(i) A is analytic;

(ii) there is a cts f : ωω → ωω s.t. A = Im f .

Proof. (ii) =⇒ (i). By the closed graph thm, f ⊆ ωω × ωω is closed, so Im f = pf is
analytic.

(i) =⇒ (ii). By def, A = pC, so we have a tree T ⊆ (ω × ω)<ω s.t. A = p[T ].
By Lemma 3.37, ∃f : ωω → (ω × ω)ω cts with Im f = [T ], so A = Im(p ◦ f).

Theorem 3.40

The set of all analytic sets is closed under:

1) ctble unions,

2) ctble intersections,

3) cts images.

Proof. Let X,Y be (ωω)n for some n > 0.
3) If f : X → Y is cts and A ⊆ X is analytic, then find g : ωω → X with Im(g) = A,

then f ◦ g : ωω → Y is cts and Im(f ◦ g) = f(A).
1) Let A =

⋃
n∈ω An, and fn : ωω � An cts surjection. Then

f∗n : ωω → nAn

x 7→ nfn(x)

is cts, so nAn is analytic.
Think of x as x(0)x+. This defines a surjection ωω �

⋃
n∈ω An.

2) Let A =
⋂
n∈ω An, where An = pCn where Cn are closed. We define

C = {(x, y) : ∀n, ((x)n, y) ∈ Cn}.

C closed. C =
⋂
C∗n where

C∗n = {(x, y) : ((x)n, y) ∈ Cn}

is a cts preimage of Cn, whence closed.

Claim 3.41. A =
⋂
An = pC.

Proof.

y ∈ A ⇐⇒ ∀n, y ∈ An
⇐⇒ ∀n, ∃xn, (xn, y) ∈ Cn
⇐⇒ ∃x, ∀n, ((x)n, y) ∈ Cn by combining xn into x

⇐⇒ ∃x, (x, y) ∈ C
⇐⇒ y ∈ pC.
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Corollary 3.42

Every Borel set is analytic.

Proof. Every closed set is analytic and the closure of Π0
1 under ctble union and intersec-

tions is a σ-alg.

Definition 3.43 (Projective hierarchy). Π1
0(X) = Π0

1(X). For n given,

Σ1
n+1(X) = {pC : C ∈ Π1

n(ωω ×X)},

Π1
n+1(X) = {X \A : A ∈ Σ1

n+1(X)}.

A set is called projective if it is in some Σ1
n.

Remark 3.44. Roughly, projections corresponds to an ∃ quantifier, and complement
corresponds to negation, so together the projective hierarchy corresponds to everything
definable in first order logic.

So if we can show that the hierarchy is nice, then we can stay assured that whatever
formula we write to describe a set, the set is not too bad.

Theorem 3.45 (Suslin)

The projective hierarchy does not collapse, i.e. Σ1
n 6= Π1

n.

Proof. By universal sets. We already know that Π1
0 has universal set. If Σ1

n has, then
Π1
n has. Suppose V is universal for Π1

n.
Construct U universal for Σ1

n+1. We shall construct these for all finite dim, as the
universal set for Σ1

n+1 in (ωω)k requires a Π1
n-set in (ωω)k+1. Suppose V in ωω-universal

for Π1
n((ωω)k+1). Let

U = {(x, x1, · · · , xk) ∈ ωω × (ωω)k : ∃z s.t. (x, z, x1, · · · , xk) ∈ V }.

Then U is Σ1
n+1. because we are projecting along the second coord, but flipping the first

two coords is a homeomorphism.
Let A ⊆ (ωω)k be arbitrary Σ1

n+1. Then A = pC, for some C that is Π1
n((ωω)k+1). So

C = Vx for some x by universality of V. So A = pVx = Ux.

Remark 3.46. If you close the Borel sets under ∃x ∈ ωω and ∀x ∈ ωω and propositional
connectives =⇒ ,⊥, then each set obtained is projective.

§3.4 Regularity Properties

Question 3.47. Are all projective sets nice?

We shall discuss three notions of niceness, aka “regularity properties”.
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§3.4.1 Lebesgue Measurability

Usually on R, not ωω, but we can assign measure 1
2n to [p] with |p| = n and extend by

Carathéodory extension thm to the smallest σ-alg containing the basic open sets (=Borel
sets). This is called Borel measurabiltiy.

If A ⊆ ωω is arbitrary, then we def sup{µ(B) : B ⊆ A,B Borel} to be the inner
measure, and inf{µ(B) : B ⊇ A,B Borel} to be the outer measure, and we call A
Lebesgue measurable if these are equal.

Equivalently, A is Lebesgue measurable iff ∃B Borel with B ⊆ A and µ(B) = µ(A),
i.e. A \B is Lebesgue null (becasue if (Bn) is a sequence tending to the inner measure
then

⋃
Bn is Borel so the sup is attained).

§3.4.2 Baire Property/Property of Baire

Let X be an arbitrary topological space. Say A ⊆ X is nowhere dense if there is no
open set s.t. A is dense in U , i.e. Int(Cl(A)) = ∅. This should be thought as small.

A set is meagre if it is ctble union of nowhere dense sets. These are also small but
can already be dense.

Example 3.48

If X is metric, then {x} is nowhere dense, so every ctble set is meagre, e.g. Q ⊆ R
is meagre but dense.

Theorem 3.49 (Baire category thm)

In R, no open set is meagre.

Definition 3.50. If X satisfies BCT, then X is Baire.

Example 3.51

THE Baire space ωω is A Baire space.

Remark 3.52. If you become famous, then make sure things named after you are
compatible.

Definition 3.53. A ⊆ X has the Baire property ( 6= being Baire) if there is a Borel
set B s.t. the symmetric difference A4B is meagre.

Remark 3.54. If we have a def of smallness, then we can say sth is regular if it is nice
except for some small portion.

§3.4.3 The Perfect Set Property (PSP)

Definition 3.55. P ⊆ X is perfect if P is closed and has no isolated points.

Theorem 3.56 (Cantor–Bendixson)

If F ⊆ R closed, then either F is ctble or F ⊇ P for some P 6= ∅ perfect.
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Proof. Very old application of transfinite recursion by removing isolated points. If we
removed everything, then we are in the first case. O/w we are in the second case at some
point.

If F ⊆ ωω is perfect, then F is closed, so F = [TF ] by tree rep thm. An isolated point
in [TF ] means there is a node on a branch s.t. the branch never splits after that node.

Definition 3.57. We call a tree perfect if ∀t ∈ T, ∃s ⊇ t s.t. s ∈ T and s splits in T .

We observe:

1. F is perfect ⇐⇒ TF is perfect. (Also holds for F = ∅) Strat trees are perfect
since branches split at every second level.

2. If T 6= ∅ is perfect, then |[T ]| = 2ℵ0 .

3. This means we can phrase Cantor–Bendixson as: No closed sets can be counterex-
ample to the Continuum Hypothesis CH.

4. There were attempts to show CB for all sets in order to show CH, leading to the
following def.

Definition 3.58. A has perfect set property (PSP) if either A is ctble, or A includes
a non-empty perfect set.

Remark 3.59. Not as good as previous niceness but it is like determinacy that A can
be PSP by being nice very locally but really nasty elsewhere.

Think about our proof that AC =⇒ ∃ non-determined set. The same proves AC =⇒ ∃
set without PSP (list all PSPs, diag-argue. . . ).

Every projective set is regular where regular means one of the above (LM/BP/PSP).
(There is a tplgy on ωω s.t. BP in this tplgy is something called Ramsey property.)

We have seen the sketch that AC =⇒ ∃ set without PSP. If AC is “too definable”,
then this might result in a projective set without PSP. (o/w the choice function is mixing
up elements of different complexity). Note that AC is equivalent to the well-ordering
principle, and we only used AC restricted to P(ωω) \ {∅}: a choice function for this set
is enough for all proofs. But this is equivalent to “there is a well-ordering of ωω”, i.e.
some R ⊆ ωω × ωω that is irreflexive, transitive, and wellfounded.

It therefore makes sense to ask whether the well-ordering as a subset is Borel/projec-
tive/. . . .

Sheet 2 says a well-ordering of ωω means that not every proj set is regular. Thus, if R
is a proj wellordering of ωω, then the proof of AC =⇒ ¬PSP gives a proj non-PSP set.
When we constructed the set, we can use instead

aα = min
R

[Tα] \ (Aα ∪Bα),

bα = min
R

[Tα] \ (Aα ∪Bα ∪ {aα}.

instead of AC.

Exercise 3.60. Express A =
⋃
α<2ℵ0 Aα as proj set if R is proj.
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Proposition 3.61

AC =⇒ ℵ1 regular.

Proof. Encode ctble ordinals as elements of ωω as follows: We split x ∈ ωω into xI, xII,
and def Ax = {u : xI(u) 6= 0} ⊆ ω. Fix b : ω × ω → ω bijection, then let

Rx = {(n,m) ∈ A2
x : xII(b(n,m)) 6= 0} ⊆ Ax ×Ax.

We map x to

‖x‖ =

{
α, if (Ax, Rx) ∼= (α,∈), α ctble ordinal,

0, o/w.

Note that x 7→ ‖x‖ , ωω → ℵ1 is a surjection in ZF.

§3.5 WO and WOα

Definition 3.62.
WOα = {x : ‖x‖ = α}, WO =

⋃
α<ℵ1

WOα.

WO is the set of codes of ctble ordinals.
Analysing the proof of AC =⇒ ℵ1 regular, we observe that we only need a choice

function for {WOα : α < ℵ1}.

Fact 3.63. The Feferman–Lévy model is a model of ZF+“ℵ1 is not regular”, so we
cannot pick from the set {WOα : α < ℵ1} is that model.

What if we have a family of closed sets? If C ⊆ ωω is closed, then C = [TC ]. If C 6= ∅,
then [Tc] 6= ∅. Pick recursively the leftmost branch by always picking the least n s.t.
there is a branch extending the place where we are currently at. Note that we used that
it is a tree on ω which is well-ordered.

If Z is a family of nonempty closed sets, then C 7→ (leftmost branch of TC) is a choice
for Z.

This implies not all WOα are closed (really crude lower bound on their complexity). If
they were, then the above argument (in ZF proves ℵ1 regular, contradicting Feferman–
Lévy.

Question 3.64. What is the complexity of WOα?

Approximately Σ0
α.

Question 3.65. What is the complexity of WO?

This is {x : (Ax, Rx) is a well order} which can be written as W1 ∩W2 ∩W3, where

W1 = {x : (Ax, Rx) is irreflexive},
W2 = {x : (Ax, Rx) is transitive},
W3 = {x : (Ax, Rx) is wellfdd}.

We have
W1 = {x : ∀n, xI(n) 6= 0 =⇒ xII(b(n, n)) = 0︸ ︷︷ ︸

this set W1n is clopen because it only depends
on two points in the sequence

},

24



Lecture Notes (Lent 2020) Part III — Infinite Games

so W1 =
⋂
n∈ωW1n is closed (Π0

1).

W2 = {x : ∀n∀m∀k, (xI(n) 6= 0 ∧ xI(m) 6= 0 ∧ xI(k) 6= 0

∧ xII(b(n,m)) 6= 0 ∧ xII(b(m, k)) 6= 0) =⇒ xII(b(n, k)) 6= 0}.

For fixed n,m, k, the set W2nmk is clopen, so W2 is closed. We should get nervous
because if W3 is also closed, then WO is closed and set theory is inconsistent and we can
go home (X).

Definition 3.66. A relation is illfounded if it is not wellfdd. In this case we have a
sequence (an)n∈ω s.t. an+1Ran.

We can write W3 = ωω \ IF , where

IF = {x : ∃y ∈ ωω, ∀k, xI(y(k)) 6= 0 ∧ ∀k, xII(b(y(k + 1), y(k))) 6= 0}.

Let
C = {(x, y) : ∀k, xI(y(k)) 6= 0 ∧ xII(b(y(k + 1), y(k))) 6= 0}.

Then by the same argument, C is closed in ωω × ωω. So IF = pC is Σ1
1, so W3 is Π1

1.
Hence WO = W1 ∩W2 ∩W3 is Π1

1. If A is Σ1
1, then there is a closed set C s.t.

x ∈ A ⇐⇒ ∃y s.t. (y, x) ∈ C,

so by tree rep, we have some tree T ⊆ ω<ω × ω<ω s.t.

x ∈ A ⇐⇒ ∃y, (y, x) ∈ [T ]

⇐⇒ ∃y, ∀n, (y �n, x�n) ∈ T.

Def Tx = {t : (t, x� |t|) ∈ T}. This is a tree ⊆ ω<ω. Then

x ∈ A ⇐⇒ ∃y, ∀n, y �n ∈ Tx ⇐⇒ ∃y, y ∈ [Tx] ⇐⇒ [Tx] 6= ∅ ⇐⇒ Tx is illfdd.

Going to the complement, we have

Proposition 3.67 (The tree representation for Π1
1 sets)

A ⊆ ωω is Π1
1 iff there is a tree T on ω × ω s.t. x ∈ A ⇐⇒ Tx is wellfdd.

Remark 3.68. WO is a particular example which comes with a “natural stratification”
in ℵ1 many layers, and the tree representation allows us to do this for arbitrary Π1

1 sets.
If A is Π1

1 and T its tree rep, then we write

Aα = {x : ht(Tx) ≤ α} ⊆ A.

We have A =
⋃
α<ℵ1 Aα.

Lemma 3.69

Aα are Borel.
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Proof. Induction.

A0 = {x : ht(Tx) = 0}
= {x : ∀i, (i) 6∈ Tx}
= {x : ∀i, (i, x(0)) 6∈ T}

which is an intersection of open sets, whence Π0
2.

If s ∈ ω<ω and T is a tree on ω, then we def the tree “T from s” by T |s = {t : st ∈ T}.
Let Asα = {x : ht(Tx|s) ≤ α}. Same argument as before, As0 ∈ Π0

2 ∀s. Assume α given
and Asβ Borel for all β < α.

Note that
Asα =

⋂
i∈ω

⋃
β<α

Asiβ

. (height at most α means all successors have height less than α).

Therefore we have shown the classical theorem:

Theorem 3.70

Every Π1
1 set is a union of ℵ1 many Borel sets.

Instead of WO, now we look at WF = {x : (Ax, Rx) is wellfdd}, and WFα = {x :
ht(Ax, Rx) ≤ α}.

For WF, we seet that the stratification given by the proof corresponds to WFα.

Remark 3.71. We can analyse WO like this by linearising the trees in Aα by Kleene–
Brouwer ordering on Sheet 3.

Theorem 3.72 (Boundedness)

Let A ⊆WF be Σ1
1, then there is an α < ℵ1 s.t. A ⊆WFα, i.e. Σ1

1 sets are bounded.

Proof. Assume A is Σ1
1 and A ⊆WF, and ∀α, A 6⊆WFα. We shall show that every Π1

1

set is Σ1
1, thus contradicting the hierarchy thm.

Let P be an arbitrary Π1
1 set. By tree representation, get T tree s.t. x ∈ P ⇐⇒ Tx

wellfdd. Since WF is also Π1
1, write U for its tree, so that y ∈ WF ⇐⇒ Uy wellfdd.

Since x ∈ P ⇐⇒ Tx wellfdd, we can find α s.t. ht(Tx) ≤ α, and now find y ∈ A s.t.
ht(Uy) > α by unboundedness of A, so that there is an order-preserving map Tx → Uy,
so

x ∈ P ⇐⇒ ∃y s.t. (y ∈ A ∧ there is an order-preserving map Tx → Uy).

But A is Σ1
1, and the existence of order-preserving map is a low level Borel property,

so P is Σ1
1, contradiction.

Corollary 3.73

If X ⊆ WF s.t. for each α < ℵ1 there is precisely one x ∈ X s.t. ht(Ux) = α (i.e.
some sort of choice function), then X cannot have the perfect set property.
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Proof. |x| = ℵ1, so if it has PSP, then it contains a non-empty perfect set, but it is closed,
so in particular Σ1

1. By bonndedness, it is bounded, but bounded subsets of X are ctble,
contradiction.

Corollary 3.74

AC =⇒ ¬PSP.

Proof. If there is a projective well order of ωω, then there is a projective set without
PSP.

§3.6 Back to Games

The goal is to show the opposite: If all projective sets are determined, then all projective
sets have PSP.

Definition 3.75 (Perfect games). Let A ⊆ 2ω (can be done on ωω but 2ω is more
convenient). We def G∗(A) to be the game with game play

I s0 ∈ 2<ω s1 ∈ 2<ω s2 · · ·
II x0 ∈ 2 x1 ∈ 2 x2

Def x∗ = s0x0s1x1 · · · . I wins if x∗ ∈ A. Note that G∗(A) is the same game as G(A∗)
where b : ω → 2<ω is a bijection, m : ω → 2, n 7→ n mod 2, and

A∗ = {x : b(x(0))m(x(1))b(x(2))m(x(3)) · · · ∈ A}.

So A∗ is a cts preimage of A, i.e. we have a map

(2<ω × 2)<ω → 2<ω, z 7→ z∗.

This shows:

Proposition 3.76

If Γ is boldface pointclass and all games in Γ are determined, then all games G∗(A)
are determined for A ∈ Γ.

Theorem 3.77

Let A ⊆ 2ω. Then

1) If I has win strat in G∗(A), then A contains a non-empty perfect set.

2) If II has win strat in G∗(A), then A is ctble.

Proof. 1) If σ is a win strat for I, then the strat tree gives a perfect subtree T of 2<ω:
the tree splits below every node because II can choose to play 0 or 1.

Now [T ] ⊆ A since σ is winning. (The converse is also true: If [T ] ⊆ A and T perfect
then we can read off a win strat for I).

2) Let τ be a win strat for II, then (σ ∗ τ)∗ 6∈ A, so if z ∈ A, then there is no way
writing z = x∗ where x ∈ (2<ω × 2)<ω, and x follows the strat τ .
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If p ∈ (2<ω × 2)<ω is a position, then we say that p is τ -consistent if ∀n ∈ |p|, we
have that if p(n) = (s, x), then x = τ(p�n, s). Hence if z ∈ A, then there is a maximal
τ -consistent position p s.t. p∗ ⊆ z (o/w we can def a τ -play by recursion to obtain z 6∈ A.)

If p is max, then any extension q is either not τ -consistent or q∗ 6⊆ z. So if the next
move of I is ∅, then τ must respond by 1− z(k), k some move number. If I plays z(k)
instead, then τ responds by 1− z(k + 1), and so on.

This says if p is a max position, then p uniquely determines z by recursion, giving a
surjection from (2<ω × 2)<ω onto A, so A is ctble.

Remark 3.78. This proof does not work if we replace 2 by 3.

§4 Large Cardinals

We have seen propositions such as PWO“There is a projective well-ordering of ωω”,
PPSP “All projective sets have PSP”, and PD “Projective determinacy”. In fact PD =⇒
PPSP =⇒ ¬PWO. These are related to large cardinal axioms, and are interesting (i.e.
indep of ZFC).

Fact 4.1 (History). In the 60’s, it was known that there is a close connection between
large cardinals and proj regularity. Solovay has shown that if IC “there is an inaccessible
cardinal”, then ProjLM (L-measurable) is consistent. At the time, it was open whether
the IC is needed (Shelah 1984: It is).

So it was clear to the set theorists of the 60’s that PD should have strength beyond
ZFC.

Definition 4.2. If β is an ordinal, then we call C ⊆ β cofinal or unbounded if
∀α < β, ∃γ ∈ C s.t. γ > α. This is mostly of interest for limits (o/w there is a max
element).

Definition 4.3. The cofinality cf(λ) = min{|C| : C ⊆ λ cofinal}. Clearly cf(λ) ≤ |λ|.
A cardinal κ is regular if cf(κ) = κ, singular if cf(κ) < κ.

With AC, we know that successor cardinals are always regular, e.g. ℵ1 = ℵ+0 on Sheet
1.

Limit cardinals often are not: {ℵn : n ∈ ω} ⊆ ℵω is cofinal, so cf(ℵω) = ℵ0, so ℵω is
singular. Simly, ℵℵ1 has cf ℵ1.

Question 4.4. Are there regular limits?

Observe that if λ is a limit ordinal, then cfℵλ = cfλ, so a necessary condition for κ
to be a regular limit is that ℵκ = κ. Normal functions have a lot of fixed points, e.g.
sup{ℵ0,ℵℵ0 , · · · }, but this only has cf ω, so it is still tiny compared to regular limits.

Definition 4.5. κ is weakly inaccessible if it is a reg limit cardinal. κ is strongly
inaccessible if it is a reg strong limit cardinal, where strong limit says ∀λ < κ, 2λ < κ.

These def are by Hausdorff.
We can show ZFC 6` ∃ strongly inaccessible cardinals. (also ZFC 6` ∃ weakly inaccessible

cardinals but this is difficult)
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§4.1 Basic Model Theory of Set Theory

This is done by the Lecturer’s Part III Topics in Set Theory in L2019. Also check Kunen,
Set Theory, Ch 4 (Easy Consistency Proofs) Sec 3 (Absoluteness).

We work within a fixed model (V,∈) |= ZFC. Consider models transitive in V . M ⊆ V
is transitive if m ∈M and x ∈ m implies x ∈M .

If (M,∈) is considered as a structure, then many definitions retain their meaning
between V and M , i.e. many formulae are absolute: if they hold in V , then also in M ,
and vice versa.

Example 4.6

1. If M |= x = N (i.e. x is the unique object that is subset to all inductive sets),
then V |= x = N.

2. If M |= f : x → y, then V |= f : x → y. The same holds for injectivity,
surjectivity, whence bijectivity, and the reverse direction also works if x, y, f ∈
M .

3. If M |= x ⊆ y, then V |= x ⊆ y.

4. However, M |= x = P(y) does not mean V |= x = P(y) because y might have
more subsets in V .

5. In general, existential formulae are upward preserved.

6. If (M,∈) ⊆ (V,∈) and ϕ is a quantifier-free formula, then (M,∈) |= ϕ ⇐⇒
(V,∈) |= ϕ. But most things are not qff when we spell it out, e.g. x = ∅ says
∀y, y 6∈ x.

Consider the von Neumann hierarchy defined by

V0 = ∅, Vα+1 = P(Vα), Vλ =
⋃
α<λ

Vα.

Exercise 4.7 (Tripos questions sometimes).

1. Vα are transitive.

2. If λ > ω is a limit, then Vλ |= ZC+Foundation, where Replacement is due to Fraekel
so we have left out F. To spell these out: Empty,Extension,Pairing,Union,Separation,
Choice,Powerset, Infinity.

Property Implication (true in M
?⇐⇒ true in V )

Special case when M = Vλ, λ limit

f : x→ y ⇐⇒ (absolute)
f injective, surjective, bijective ⇐⇒
α is an ordinal ⇐⇒ (only non-trivial thing is wellfddness, but

any infinite descending seq in V is in M by tran-
sitivity)

x = N (n.b. not quantifier-free) ⇐⇒
x is ctble (this sentence is Σ1) =⇒ (upward absolute). Intuitively, M may

not see the surjection f : N → x in V , so we
expect 6⇐= (this is not a proof)

29



Lecture Notes (Lent 2020) Part III — Infinite Games

Property Implication (true in M
?⇐⇒ true in V )

Special case when M = Vλ, λ limit

α is a cardinal, ⇐= (downward absolute).
i.e. smaller ordinals do not surject
to α. (Π1)

⇐⇒ . If α not card, then the surjectiion f :
β → α satisfies

f ∈ P(β × α) ⊆ Vα+β ⊆ Vλ.

κ is regular, ⇐=.
i.e. smaller sets are not cofinal ⇐⇒ . The cofinal subset is also in Vλ.

x ⊆ y ⇐⇒ (transitivity is key)

x = P(y) ⇐=. y can have more subsets in V .
⇐⇒ since Vλ is defined by power sets.

κ is a limit cardinal ⇐=

κ is weakly inacc ⇐= (we have seen regularity and limit)

κ is a strong limit ⇐= (if M |= 2λ ≥ κ, then M has f : P(λ)� κ,
but that in V is a surjection from a subset of
P(λ) to κ.)

κ is strongly inacc ⇐= by previous

For models of the form Vλ, λ limit, we have

V |= κ strongly inacc ⇐⇒ Vλ |= κ strongly inacc.

The same holds for weakly.
We shall prove the following:

Theorem 4.8

If κ is strongly inacc, then Vκ |= ZFC.

Corollary 4.9

ZFC 6` IC “there is a strongly inacc card”, assuming that ZFC is consistent.

Proof 1 of Cor. If ZFC ` IC, then ZFC ` ∃κ (Vκ |= ZFC) (note that this says ∀n ∈ ω, the
n-th item in our list of propositions is a thm . . . ). By completeness, ZFC ` Cons(ZFC),
so by Gödel’s incompleteness, ZFC is not consistent.

Proof 2 of Cor. Suppose ZFC ` IC. Work in some model V of ZFC ( n.b. we are using
ZFC consistent.) Let κ0 ∈ V be the least inacc cardinal. Look at Vκ0 .

This is a model of ZFC, so Vκ0 |= ZFC + IC. Find λ < κ0 s.t. Vκ0 |= λ inacc, so
V |= λ inacc, contradicting minimality of κ0.

Now it suffices to prove Vκ |= Replacement. We shall show sth stronger, i.e. if
F : Vκ → Vκ, and x ∈ Vκ, then F [x] ∈ Vκ. (Replacement only says this for definable F )

“You can avoid all the logic by just counting things”
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Lemma 4.10

If κ strongly inacc and λ < κ, then |Vλ| < κ.

Proof. “Blatantly obvious”. Induction. |Vω| = ℵ0 < κ. Suppose |Vα| < κ, then
|Vα+1| = |P(Vα)| = 2|Vα| < κ since κ is strong limit.

If λ < κ is a limit cardinal, then Vλ =
⋃
α<λ Vα, so

|Vλ| ≤
∑
α<λ

|Vα| < κ

by regularity.

Lemma 4.11

Suppose κ is strongly inacc. Take some A ⊆ κ. Then A ∈ Vκ ⇐⇒ |A| < κ.

Proof. =⇒ If A ∈ Vκ =
⋃
λ<κ Vλ, then ∃λ < κ s.t. A ∈ Vλ. Since Vλ is transitive,

A ⊆ Vλ, so |A| ≤ |Vλ| < κ by Lemma 4.10.
⇐= A ⊆ Vκ, |A| < κ, so ∀a ∈ A,∃α < κ s.t. a ∈ Vα+1 \ Vα (at lim levels nothing new

is added). Write ρ(a) = α. (Called the Mirimanoff rank).
Consider

A∗ = {ρ(a) + 1 : a ∈ A} ⊆ κ,

then |A∗| ≤ |A| < κ. By rglrty, A∗ is bounded by some λ < κ, so A ⊆ Vλ, so
A ∈ P(Vλ) = Vλ+1 ⊆ Vκ. “Very elementary.”

Proof of Theorem 4.8. Let F : Vκ → Vκ, and x ∈ Vκ. By Lemma 4.11, |x| < κ, so
|F [x]| ≤ |x| < κ. But F [x] ⊆ Vκ, and |F [x]| < κ, so by Lemma 4.11 again, F [x] ∈ Vκ.

Remark 4.12. Vω+ω goes wrong because ω is bounded but we can map it to {ω+ 1, ω+
2, · · · } which is unbounded in Vω+ω, so Vω+ω 6|= Replacement.
Vℵ1 does not work because P(ω) ∈ Vω+2 but surjects to ℵ1.

§4.2 Real Model Families

Definition 4.13. We call a familty {Mx : x ∈ R} a real model family if each
Mx |= ZFC and is transitive, and for each x, x ∈Mx, M0 ⊆Mx, and OnMx = OnV (i.e.
they have the same ordinals), where 0 is the real number 0 in your favourite construction
for R.

“Did I tell you I don’t like the real numbers?”
Note that we can also use ωω instead of R as they biject. We also write M = M0.

Remark 4.14. This is non-standard term.

Example 4.15

If R ⊆M0, then Mx = M0 is a real model family.

Definition 4.16. An RMF satisfies CH if each model satisfies CH. An RMF is projec-
tively well-ordered if for each x, the set ωω ∩Mx has a projective well-ordering (in
V ).
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Definition 4.17. We say ℵ1 is inaccessible by reals for
−→
M ,
−→
M RMF, if ∀x, ℵMx

1 < ℵV1 ,
i.e. Mx thinks there is a smaller unctble cardinal. “They are wrong everywhere”.

Lemma 4.18

If
−→
M is an RMF, s.t. ℵ1 is inacc by reals for it, then M = M0 |= “ℵV1 is a weakly

inacc cardinal”.
If moreover

−→
M satisfies CH, then M |= “ℵV1 is strongly inacc”.

Proof. Need to show that ℵV1 is a regular and limit cardinal. Since ℵ1 is reg in V , and
rglrty is downward absolute, M |= “ℵV1 regular”.

Suppose ℵV1 is not lim in M , then there is κ < ℵV1 , s.t. M |= ℵV1 = κ+, i.e. no cardinals
between ℵV1 and κ.

Since κ < ℵV1 , there is some x ∈ ωω s.t. (Ax, Rx) ∼= (κ,∈), i.e. x ∈WOκ. Clearly, if
x ∈ N , then N |= “x is ctble”, so go to Mx ⊇M0, and we have Mx |= “κ is ctble”.

Since being a cardinal is downward absolute, in Mx we have ℵV1 is the least unctble
cardinal, so ℵV1 = ℵMx

1 , contradiction.
Moreover, suppose there is no κ < ℵV1 s.t. M |= 2κ ≥ ℵV1 , i.e. there is f ∈M s.t.

f : P = P(κ) ∩M → ℵV1 surjective.

Since κ < ℵV1 , find x s.t. x ∈WOκ. Then in Mx, we find P ∈M ⊆Mx, f ∈M ⊆Mx,
and x ∈Mx, so using the bijection between ω and κ from x, we put the above together
to show P ′ ⊆ P(ω), where P ′ is the image of P under the inverse of the bijection, and
f ′ : P ′ → ℵV1 surjection. Hence Mx |= 2ℵ0 ≥ ℵV1 .

If moreover Mx |= CH, then Mx |= ℵMx
1 ≥ ℵV1 , contradicting ℵV1 inacc by reals.

Definition 4.19. A ⊆ WO is called a set of unique codes if ∀x ∈ WO, there is at
most one y ∈ A s.t. ‖x‖ = ‖y‖. (Recall x ∈WO says (Ax, Rx) ∼= (α,∈) and ‖x‖ = α.)
SUCs are thin, i.e. they intersect each layer of WO at most once.

We have already shown the following:

Lemma 4.20

An SUC cannot contain a non-empty perfect set. In particular if an SUC has PSP,
then it is ctble.

Proof. If P ⊆ A perfect, then P closed, so Σ1
1, so by boundedness, P ⊆WO≤α, α < ℵ1,

so |A ∩WOα| ≤ |α|, contradicting P unctble.

Lemma 4.21

If there is a proj well-ordering of S ⊆ ωω, then there is a proj SUC A s.t. ∀x ∈
S ∩WO, ∃y ∈ A s.t. ‖x‖ = ‖y‖ .

Theorem 4.22

If
−→
M is a projly wellorded RMF, and every proj set has PSP, then ℵ1 is inacc by

reals for
−→
M .
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Proof. Since
−→
M is projly wellorded, we have proj wellorders of ωω ∩ Mx ∀x. By

Lemma 4.21, there is an SUC Ax s.t.

∀z ∈WO ∩Mx, ∃y ∈ Ax s.t. ‖y‖ = ‖z‖ . (∗)

Assume to the contrary that we have some x s.t. ℵMx
1 = ℵV1 . By (∗), this means

|Ax| = ℵ1. Ax is projective, so Ax has PSP, but now we have an unctble SUC with PSP,
contradicting Lemma 4.20.

Theorem 4.23 (Gödel 1938)

There is an RMF which is projly wellorded and satisfies CH. This is called the
constructible universe L.

We shall use this as a black box.

Remark 4.24. This can be thought of as the smallest model of set theory. It is the
“closure” under the axioms, but very much more complicated, since when we use Separation,
the meanings of the formulae changes after we add new things to the universe.

Corollary 4.25

If all proj sets have PSP, then there is a model of ZFC + IC.

Corollary 4.26

ZFC 6|=“all proj sets have PSP”.

Corollary 4.27

ZFC 6|= PD.

Proof. We have seen PD =⇒ PPSP.

If you think ZFC is everything, then we have fully settled determinacy, except . . .

Question 4.28. What about determinacy for Σ1
n for fixed n?

Answer 4.29. The Borel sets form the largest class for which ZFC proves determinacy,
because Det(Σ1

1) implies large cardinals.

Question 4.30. Can we get inverse thms e.g. IC =⇒ PD?

Answer 4.31. NO. PD is “unimaginably” stronger than IC, where “unimaginably” does
not (yet) have technical meaning.

Fact 4.32 (Martin–Steel thm, 1985). If there are n Woodin cardinals and a measurable
cardinal above them, then Det(Π1

n+1) holds.

This is tought of as the most remarkable thm in logic in 1980’s, although we do not
know what it says. The thm is named after Tony Martin and John Steel, and Woodin
cardinals are named after Hugh Woodin.

Our next goal is to prove the case where n = 0.
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§4.3 Measurable Cardinals

Definition 4.33. Fix a set S. F ⊆ P(S) is a filter on S, if

(1) If X,Y ∈ F , then X ∩ Y ∈ F .

(2) If X ∈ F and Y ⊇ X, then Y ∈ F .

(3) ∅ 6∈ F .

(4) S ∈ F .

Think of ∈ F as a notion of largeness.
A filter F is called principal if there is s ∈ S s.t. {s} ∈ F . These look like

F = {X : s ∈ X}, so we care about non-principal filters.
A filter F is ultra if ∀X ⊆ S either X ∈ F or S \X ∈ F . So ultrafilters are maximal.

Principal filters are ultra.
Let κ be a cardinal. We say F is κ-complete if

∀λ < κ, ∀{Xα : α < λ} ⊆ F,
⋂
α<λ

Xα ∈ F.

So e.g. ℵ0-completeness means closure under finite intersection and follows from (1).
ℵ1-completeness means ctbly complete or σ-complete. Principal filters are κ-complete
∀κ.

Question 4.34. When is there a κ-complete non-principal uf on κ?

We shall show that this implies κ is strongly inacc, but it is much stronger than that.
Although we now know PD unimaginably stronger than IC, people used 40 years due

to lack of techniques.
Observe:

Proposition 4.35

If U is a κ-complete non-principal uf on κ, then ∀α < κ, α 6∈ U .

Proof. |α| < κ, so α is a union of < κ singletons, so α 6∈ U by κ-completeness.

This also says κ \ α ∈ U .

Corollary 4.36

No non-principal uf on κ can be λ-complete for λ > κ.

Proof.

κ =
⋃
α∈κ
{α}.

Proposition 4.37

If κ is unctble cardinal, and U is κ-complete uf, non-pr on κ, then κ is strongly
inaccessible.
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Remark 4.38. κ = ℵ0 satisfies this property, so the study of inacc cardinals starts from
“wouldn’t it be strange if there is only one such thing in the universe?” Similar to the
study of exoplanets / extraterrestrial life.

Proof. Regular Suppose κ is singular, then κ =
⋃
α<λ κα for κα < κ. By Proposition 4.35,

κα 6∈ U , so by κ-completeness,
⋃
α<λ κα = κ 6∈ U , contradiction.

Strong limit Suppose λ < κ has 2λ ≥ κ. Find X ⊆ {f : λ→ 2} of cardinality κ. Let
U∗ be the uf on X inherited from U via the bijection X ↔ κ. Then U∗ is non-pr and
κ-complete.

We shall recursively construct some y ∈ 2λ. Let A0 = X. We can write X = B ∪ C,
where

B = {x ∈ X : x(0) = 0}, C = {x ∈ X : x(0) = 1},

so exactly one ofB or C is in U∗. Def y(0) =

{
0, if B ∈ U∗,
1, if C ∈ U∗.

LetA1 =

{
B, if B ∈ U∗,
C, if C ∈ U∗.

For successors, suppose y �α and Aα are defined, then let

B = {x ∈ Aα : (y �α)0 ⊆ x}, C = {x ∈ Aα : (y �α)1 ⊆ x}.

By ind hyp Aα ∈ U∗, so exactly one of B and C is in U∗, so we def Aα+1 to be that one,
and y(α) correspondingly.

For limits, def Aγ =
⋂
α<γ Aα.

Claim 4.39. If γ limit, and Aα ∈ U∗ ∀α < γ, then Aγ ∈ U∗.

Proof. This is precisely κ-completeness.

Now we have defined y ∈ 2λ and Aα for α < λ.

A =
⋂
α<λ

Aα ∈ U∗

by κ-completeness.

Claim 4.40. If x ∈ A, then x = y, i.e. A ⊆ {y}, either contradicting non-principality or
that ∅ 6∈ U∗.

Proof. If α < λ, then x(α) = y(α) by construction since x ∈ Aα+1, and Aα+1 is a set of
those z s.t. z(α) = y(α).

Definition 4.41. A uf U on κ is called normal if for any family {Aα : α < κ} ⊆ U
(note that this has length κ unlike that for κ-completeness), the diagonal intersection

4
α<κ

Aα =

ξ < κ : ξ ∈
⋂
α<ξ

Aα


is in U .

Note that ξ appears in the subscript of
⋂

.

Definition 4.42. κ cardinal is called measurable if there is a κ-complete non-pr normal
uf on κ.
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Theorem 4.43

ZFC |= If there is a κ-complete non-pr uf on κ, then we can normalise the uf. This
says there is a κ-complete non-pr normal uf on κ, i.e. κ is measurable.

Remark 4.44. We shall not prove this. Highly-non-trivially uses AC. There is a
“canonical candidate” for the normalisation function.

GOAL:

Theorem 4.45 (Martin’s thm)

If there is a measurable cardinal, then all Π1
1-sets are determined.

This is the n = 0 case of Martin–Steel.
IDEA: Tree rep. If T is a tree on any M , then in ZFC, G([T ]) is determined by

Gale–Stewart (if T is well-ordered then we do not need AC, e.g. when M = κ or κ× ωn).
If A ∈ Σ1

1, then A = p[T ] where T ⊆ (ω × ω)<ω is well-orded, so G([T ]) is determined.
For the game G(A):

G(A)
I x0 x2 · · · x,
II x1 x3

consider the auxilliary game Gaux(A, T ):

Gaux(A, T )
I y0, x0 y1, x2 y2, x4 · · · (y, x)
II x1 x3

where I wins if (y, x) ∈ [T ].
By above, Gaux(A, T ) is determined.

1. If I has a win strat in Gaux(A, T ), then I can extract x2n from the win strat in
Gaux(A, T ) to obtain a win strat in G(A) (i.e. I plays Gaux in I’s mind while II
thinks II is playing G). The play in Gaux(A, T ) is (y, x) ∈ T which witnesses
x ∈ p[T ] = A.

We are getting close to the highly non-trivial part of the course.

2. In order to get a win strat for II for G(A) from Gaux(T ), we need a translation
function.

Definition 4.46. A set A ⊆ ωω is κ-Suslin if there is a tree T ⊆ (κ×ω)<ω s.t. A = p[T ].
(See Sheet 3 Problem 40)

Can show ℵ0-Suslin ⇐⇒ Σ1
1. This means if we have tree rep for Π1

1, then κ >
ℵ0.

Theorem 4.47 (Shoenfield)

Π1
1 sets are ℵ1-Suslin.
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Proof. Let A be Π1
1. Let T be the tree rep of ωω \ A. Then T ⊆ (ω × ω)<ω, and

x 6∈ A ⇐⇒ x ∈ p[T ]. Let

Tx = {s ∈ ω<ω : (s, x� |s|) ∈ T}.

Then

x ∈ A ⇐⇒ Tx is wellfdd previous result

⇐⇒ ∃ order-preserving map (Tx,⊇)→ (α,≤) by Problem 30.

By ctbility, α = ℵ1 is enough.
We want T̂ ⊆ (ℵ1 × ω)<ω s.t. ∃g, (g, x) ∈ [T̂ ] ⇐⇒ x ∈ A. Note that g is a function

ω → ℵ1.
Encoding order-preserving maps Fix a list of all finite sequence of natural numbers

i 7→ si bijective. We way g : ω → ℵ1 is an order-preserving code (OPC) for a tree S
if ∀i, j with si, sj ∈ S,

si ⊇ sj =⇒ g(i) ≤ g(j). (∗)

This is equiv to saying f : S → ℵ1, si 7→ g(i) is ord-preserving.
We say u : n→ ℵ1 is a partial opc for S if (∗) holds on domu.
First attempt Let

T̂ = {(u, s) : s ∈ ω<ω, u is a partial opc for Tx}.

This does not work because there is an x. There are a lot of choices of extensions x given
s, but we only know s.

Tx =
⋃
n∈ω

Tx�n, where Tx�n = {s : |s| ≤ n, and (s, x� |s|) ∈ T}

is a finite height tree.
Second attempt

T̂ = {(u, s) : s ∈ ω<ω and u is a partial opc for Ts}.

This is called the Shoenfield tree.

Claim 4.48. A = p[T̂ ].

Proof.

x ∈ A ⇐⇒ ∃f : (Tx,⊇)→ (ℵ1,≤) order-preserving

⇐⇒ ∃g ∈ ℵω1 , g is an opc for Tx
?

=⇒ (g, x) ∈ [T̂ ].

To see (?), fix n, and consider g �n and x�n.

g : n→ ℵ1 is a partial opc for Tx =⇒ g �n is a partial opc for Tx�n

=⇒ (g �n, x�n) ∈ T̂ .

Conversely,

x ∈ p[T̂ ] =⇒ ∃g : ω → ℵ1 s.t. (g, x) ∈ [T̂ ]

=⇒ ∃g∀n, g �n is partial opc for Tx�n.
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Suppose i, j are s.t. si, sj ∈ Tx. Find large n s.t. si, sj ∈ Tx�n. Then g �n partial opc
says g(i) ≤ g(j), so g is opc for Tx, so

∃g∀n, g �n is partial opc for Tx�n =⇒ ∃g, g opc for Tx

=⇒ x ∈ A.

Remark 4.49. The Shoenfield tree for A does not depend on A but only on T . This
was used by Shoenfield to obtain Shoenfield absoluteness: if M ⊇ ℵN1 , then M and
N agree on Π1

1 sentences. Π1
1 sentences are a lot, e.g. statements about naturals, and

Cons(ZFC) is a statement about naturals, namely that ∀n, n does not encode a proof of
0 = 1.

Proof of Theorem 4.45. Let κ be measurable. Observe that the Shoenfield tree construc-
tion works for any cardinal κ ≥ ℵ1. So let

T̂ = {(u, s) : u ∈ κ<ω, s ∈ ω<ω, u is a partial opc for Ts}.

The aux game Gaux(T̂ ):

I x0, α0 x2, α1 x4, α2 · · · x = (xi : i ∈ ω)
II x1 x3 g(i) = αi,

and (g, x) is a win for I if (g, x) ∈ [T̂ ] is determined.
WTP that we can translate win strat τ for II in Gaux(T̂ ) into one τ∗ for II in G(A).

We already have problem in the first step because we have to guess out of thin air α0

corresponding to x0, in order to play τ(x0, α0). Also if we can do this in all steps then
we are done.

Sheet 3 Problem 32 says there is the Kleene–Brouwer order <KB on ω<ω s.t. (T,⊇) is
wellfdd ⇐⇒ (T,<KB) is a well ord, i.e. we can linearise tree orders.

A function g : ω → κ is called a KB-code for S if

∀i, j with si, sj ∈ S, si <KB sj =⇒ g(i) < g(j). (∗)

Simly g : n→ κ is a partial KB-code for S if (∗) holds for i, j < n.
The KB-variant of Shoenfield tree is now

TKB = {(u, s) : u is a partial KB-code on Ts},

and A = p[TKB].
N.b. we have not used κ measurable but only slightly modified the tree. To summarise

our progress, for Π1
1 set A,

x ∈ A ⇐⇒ x ∈ p[T̂ ]

⇐⇒ x ∈ p[TKB], TKB ⊆ (ℵ1 × ω)<ω.

If I wins Gaux(TKB), then I wins G(A).
WTP: If II wins Gaux(TKB), then II wins G(A). Gaux(TKB) is closed so must be

determined by Gale–Stewart, so this shows G(A) determined.
Let τ be a win strat for II in Gaux(TKB). Suppose s ∈ ω<ω and |Ts| = m. Take Q ⊆ κ

of size m. Then we have an order isomorphism (Ts, <
KB) ↔ (Q,<) sending in to qn,

where Ts = {si0 , si1 , · · · } and Q = {q0, q1, · · · }.
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Let

uQ(i) =

{
the j-th element of Q, if si is sij ,

0, if si 6∈ Ts.

Then uQ is a partial KB-code.
Play the game Gaux(TKB) by filling the missing I-moves with appropriate elements of

Q ∪ {0}, that is, fix Q, and II interprets the position as

I x0, uQ(0) x2, uQ(1) x4, uQ(2) · · ·
II x1 x3

Suppose given (x0, x1, · · · , x2n) = s, then define fs(Q) = τ(uQ �n, s).
fs is a colouring of κ(m) with ℵ0 many colours. By Rowbottom’s thm (Problem 39),

there is a monochromatic Hs ∈ U (the ultrafilter witnessing κ measurable). Since U is
κ-complete, and there are only ℵ0 many sequences s, we get that

H =
⋂

s∈ω<ω
Hs ∈ U,

so H is unctble, so if x ∈ A, then there is an order-preserving injection (Tx, <KB) →
(H,<). Now we shall use H to define a strat τH in the game G(A). Say the current
position is

I x0 x2 · · · x2n
II x1 x3

Let s = (x0x1 · · ·x2n). If m = |Ts|, then ∀Q,Q′ ∈ H(m), fs(Q) = fs(Q
′), so we can def

τ(s) to be the unique value of fs on elements of H(m).

Claim 4.50. τH is a win strat for II in G(A).

Suppose not, then let x ∈ A be the result of playing by τ . Since x ∈ A, there is an
order-preserving injection h : (Tx, <KB)→ (H,<). Write

g(i) =

{
α, if si ∈ Tx and h(si) = α,

0, if si 6∈ Tx.

Then g is a KB-code for Tx, so in particular, (g, x) ∈ [TKB].
We shall show that (g, x) is a play in Gaux(TKB) following a win strat τ for II. Consider

the following position in Gaux(TKB):

I x0, u(0) x2, u(1) · · ·
II x1 x2n+1

Here
τ(u�n, (x0 · · ·x2n)︸ ︷︷ ︸

s

) = fs(Q) = τH(s) = x2n+1,

Q arbitrary in H(m), so (g, x) is according to τ in Gaux(TKB), so (g, x) 6∈ [TKB], contra-
diction.

Remark 4.51. We have now reached the 1970’s, when people prove that determinacy
follows from large cardinals.
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§5 Axiom of Determinacy

Definition 5.1 (AD,ADX). AD says “For all A ⊆ ωω, G(A) is determined.” We also
have the variant ADX which says “For all A ⊆ Xω, G(A) is determined.”

Remark 5.2. We have seen that AD =⇒ ¬AC. Historically this is proposed as an
alternative to AC that attracted attack (afterall, AC is TRUE (?)).

We have already seen

1. If AD holds, then every A ⊆ ωω has PSP.

2. Boundedness thm for WO. (Did this use CHOICE?)

One thing that uses AC but few people know uses AC:

f : ωω → ωω is cts ⇐⇒ ∀ seq (xn)→ x, (f(xn))→ f(x) “sequential continuity”.

This uses the general equivalence in metric spaces, whose proof uses a small fraction of
AC, namely ACω(R), i.e. picking from a ctble family of subsets of R, when we try to find
a sequence xn → x with f(xn) 6→ f(x) given f not cts.

Theorem 5.3

AD =⇒ ACω(R). More generally, ADX =⇒ ACX(Xω).

Proof. In Sheet 1, we have shown that finite determinacy for games on X gives ACX(X).
Here it is ACω(ω) which is obvious by well-orderedness.

But now we have inf games

I x0
II x1x2 · · ·

with II wins if (x1x2 · · · ) ∈ Ax0 . As on Sheet 1, I cannot have win strat, so by AD, II has,
so the win strat for II is a choice function for {Ax : x ∈ ω}, so ADX =⇒ ACX(Xω).

Question 5.4. Can we use any of the descriptive set theory which is developed under
ZFC?

Almost all of it can be done in ZF + ACω(R), but we really need this.
Recall the Feferman–Lévy model M of ZF where R is a ctble union of ctble sets,

but ZF + ACω(R) `“ctble union of ctble real sets is ctble”, and ZF ` R is unctble, so
M |= ¬ACω(R). In M , every set of reals is ∆0

4.

Proposition 5.5

ZF 6` Borel-Determinacy.

Proof. If it does, then M |= Borel-Determinacy, so M |= AD. By previous arguments, the
constructible universe L has a copy LM in M , and LM |= ZFC + IC, but this contradicts
Gödel’s incompleteness.

Alternatively, M |= AD, so M |= ACω(R), contradicting M |= ¬ACω(R).

Fact 5.6. If ι : X ↪→ Y is injective, then ACZ(Y ) =⇒ ACZ(X) and ADY =⇒ ADX .
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Corollary 5.7

ADℵ1 is inconsistent (with ZF).

Proof. 1. ADℵ1 =⇒ AD =⇒ every set has PSP.

2. We know that unctble sets of unique codes cannot have PSP.

3. A set of unique codes can be produced by a choice function for the family {WOα :
α < ℵ1}

4. This is a consequence of ACℵ1(ωω).

5. But ADℵ1 =⇒ ACℵ1(ℵω1 ) =⇒ ACℵ1(ωω).

Remark 5.8. It is curious that different models of ZF can have very different witnesses
to ¬ADℵ1 . It is either a non-determined game of the form G∗(A), A ⊆ ωω, or the choice
function game as in ACℵ1(ℵω1 ) proof.

We have seen so far

AD PD Det(Π1
1)

MC IC

where  means “is stronger than”, PD is proj determinacy, MC is measurable cardinal,
and IC is inacc cardinal.

Our goal for the final three lectures is to prove that AD is stronger than MC. In fact
the following pairs are roughly equiv in strength (whatever that means):

Det(Π1
1)! MC,

PD! ∀n,∃n Woodin Cardinals,

AD! ∃∞ Woodin Cardinals.

See Kanamori, The Higher Infinite, Chapters 31 and 32. “This is a book that you can
read late at night (if you skip the proofs)”

Theorem 5.9 (Solovay)

AD =⇒ There is a non-pr ℵ1-complete uf on ℵ1.

Note that such a cardinal is strongly inacc in ZFC, but only the “regular” part of our
proof works without AC. First step is to show AD =⇒ every uf is ℵ1-complete.

At this stage it is conventional to state the axioms assumed in brackets next to the
theorem number.

Lemma 5.10 (ZF)

If U is a uf on S and U is not ℵ1-complete, then there is a non-pr uf on N.
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Proof. S =
⋃
n∈ω An with An 6∈ U, Ai ∩ Aj 6= ∅. Def f : S → N by x 7→ n if x ∈ An.

Then consider U∗ = f∗U = {X ⊆ N : f−1[X] ∈ U}. By checking the definitions, U∗ is an
uf on N.

WTP U∗ is non-pr. Assume {n} ∈ U∗, then f−1[{n}] ∈ U , i.e. An ∈ U , contradiction.

Proposition 5.11 (ZF + AD)

There is no non-pr uf on N.

Proof. Let U be any uf on N. Def GU :

I s0 s2 · · ·
II s1

where si ∈ N(<ω) are finite subsets, and

si ∩
⋃
j 6=i

sj = ∅. (∗)

If (∗) is violated, then the first player who does loses. Otherwise, let A =
⋃
i∈ω s2i, B =⋃

i∈ω s2i+1, then A,B are disjoint, so at most one is in U . I wins if A ∈ U . If U is
principal, then I has win strat. We shall show that if U is non-pr then no one has win
strat by strategy stealing.

1. Suppose σ is a win strat for I, then we need to construct τ for II winning against
sequence s0, s2, · · · played by I.

I s0 s2 s4 · · · A
II s1 = t1 \ s0 s3 = t2 \ s0 · · · B

Gaux
I’(= II) t0 = σ(∅) t2 = σ(t0t1) · · · A′

II’(= I) t1 = s2 t3 = s4 · · · B′

We define τ by σ(t0, · · · , t2i−1)\s0 as above. Call the unions of each row A,B,A′, B′.
Since σ is winning, A′ ∈ U , and A = B′ ∪ s0. Since A′ ∈ U, B′ 6∈ U , so
A ∈ U ⇐⇒ s0 ∈ U , so A ∈ U ⇐⇒ U is principal.

Hence if U is non-pr, then τ is a win strat for II, thus I cannot have win strat.

2. Suppose τ is a win strat for II. Fix s1, · · · moves for II. We define a strat for I as
follows:

I s0 = t1 s2 = t3 · · · A
II s1 s3 · · · B

Gaux
I’(= II) t0 = ∅ t2 = s1 · · · A′

II’(= I) t1 = τ(t0) t3 = τ(t0t1t2) · · · B′

Since τ was winning for II, A′ 6∈ U , so B = A′ 6∈ U . However, this is not enough
for A ∈ U since we do not know A = ω \B. But this is just technicality.

Tech aside: If τ is any strat for II, then we can replace it by τ ′ that guarantees
B = ω \A and s.t. if τ is win for II then τ ′ is also win for II.

τ ′ is defined as: do what τ does but in addition, check at round k which numbers
≤ k are still open for grab. So we could have done this first and WLOG A = ω \B.
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Now A = ω\B ∈ U , so σ is winning. Thus every win strat for II can be transformed
to a win strat for I, so II has no win strat.

Remark 5.12. Zorn’s lemma gives 22
κ

many ufs on κ, but there are only κ many pr
ufs! So most of them are non-pr.

But AD says the number of ufs on ω is ℵ0 < 22
ℵ0 . As a consequence, the hard part is

not completeness (given AD this is automatic up to ℵ1), but non-principality (easy by
AC but difficult for AD).

We shall do Martin’s construction of an uf on ℵ1. Consider R = (Vω+1,∈). What is in
R?

If x ∈ ωω, then elements of x are of the form

(n,m) = {{n}, {n,m}} ∈ Vω,

so x ⊆ Vω, x ∈ Vω+1, so ωω ⊆ Vω+1.
If σ is a strategy ω<ω → ω, s ∈ ω<ω, then s ∈ Vω, so σ ⊆ Vω, so σ ∈ Vω+1.
We call a formula ϕ in two vars R-absolute if for all transitive models M ⊆ V of ZF

and ∀x, y ∈M ,
M |= “R |= ϕ(x, y)” ⇐⇒ R |= ϕ(x, y).

Here M is a ZF model so it thinks some subset of M as VM
ω+1 which may not be the true

Vω+1.

Example 5.13 (R-absolute formulae)

1. Quantifier-free formulae.

2. Formulae where all quantifiers are of the form ∃u ∈ N. (Since transitive models
agree on what N is.)

3. Others that Kunen’s book in section on absoluteness details.

Definition 5.14 (R-absolutely definable). For x, y ∈ Vω+1, if there is ϕ R-absolute s.t.

∀z, z ∈ x ⇐⇒ (Vω+1,∈) |= ϕ(z, y),

then we say x is R-absolutely definable in y, written x ≤D y.

≤D is reflexive and transitive (conjunctions are absolute), so ≤D is a partial preorder,
but not in general antisymmetric: ∅ ≤D {∅}, {∅} ≤D ∅.

For partial preorders, we can define x ≡D y if x ≤D y and y ≤D x. Then ≡D is an
equiv relation, and quotienting gives a partial order.

Since x ≤D y is witnessed by some ϕ and there are only ctbly many ϕ, we have
∀y, {x : x ≤D y} is ctble. So each equiv class [y]≡D is ctble.

Since there is an R-absolute def of a bijection between ω<ω and ω, we can encode
strats σ as elements of ωω, say code(σ) ∈ ωω s.t. code(σ) ≡D σ. If x, y,∈ ωω, def

x⊕ y(i) =

{
x(k), if i = 2k,

y(k), if i = 2k + 1,

then x ≤D x⊕ y, and y ≤D x⊕ y, so xI ≤D x and xII ≤D x.
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Therefore σ ∗ x ≤D code(σ) ⊕ x. This ⊕ is called Turing sum. We shall def the
Martin filter on ωω using ≤D with the prop that

AD =⇒ the Martin filter on ≡D -closed sets is a non-pr uf.

But we will need to map ωω to ℵ1 that preserves non-principality of the uf.

Definition 5.15. A set C ⊆ ωω is called a cone (D-cone) if there is x ∈ ωω s.t.
C = {y ∈ ωω : x ≤D y} = cone(x). x is called the basis of the cone.

Definition 5.16 (Martin).

MD = {A ⊆ ωω : A includes a cone}

is the Martin filter.

Proposition 5.17 (ZF)

MD is a non-pr filter on ωω.

Proof.

(1) If A ∈MD, B ⊇ A, then B includes a cone.

(2) ∅ does not include a cone, and ωω includes (is) a cone.

(3) Let C ⊆ A, D ⊆ B be cones, then let C = cone(x), D = cone(y). Consider
E = cone(x⊕ y). Since x ≤D x⊕ y and y ≤D x⊕ y, E ⊆ C ∩D, so E ⊆ A ∩B, so
A ∩B ∈MD.

(4) If A ⊆ ωω is finite, then A cannot include a cone, so MD is non-pr.

Remark 5.18. In ZFC, it is also true that MD is ℵ1-complete because in (3), we let
An ∈MD and Cn = cone(xn) ⊆ An by AC, then construct

⊕
n∈ω xn as the unique y s.t.

(y)n = xn with an explicit bijection ω × ω → ω.
This argument only works in ZFC, so in our later ZF + AD application, we need to use

our previous thm about ℵ1-completeness.

Lemma 5.19 (Martin’s)

Suppose A ⊆ ωω s.t. A is closed under ≡D, i.e. if x ∈ A, and y ≡D x, then y ∈ A.
If I has w.s. in G(A), then A includes a cone. If II has w.s. in G(A), then ωω \A
includes a cone.

Corollary 5.20

AD |= MD ∩ {A : A ≡D -closed} is an ℵ1-complete non-pr uf on {A : A ≡D -closed},
which is equiv to the same on the quotient DD = ωω/ ≡D.

Proof of Lemma 5.19. (For I only). Let σ be a w.s. for I.
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Claim 5.21. C = cone(code(σ)) ⊆ A.

Proof. Let z ∈ C, i.e. z ≥D σ ≡D code(σ). Then

z ≤D σ ∗ z ≤D code(σ)⊕ z ≤D z.

Hence σ ∗ z ≡D z, and σ ∗ z ∈ A, so z ∈ A.

Fact 5.22. Martin was a recursion theorist before proving BorelD which made him
become set theorist. This lem was his first contribution to set theory but he did not
think of it as a set theory thing.

Now we have a ℵ1-complete non-pr uf on DD. We need to transfer it to ℵ1.
Recall Gödel’s real model family Lx. These are transitive models of set theory s.t.

x ∈ Lx, with the properties that each is projly well-orded, and Lx |= CH. We used this
to show that if every proj set has the PSP, then ℵ1 is inacc by reals for (Lx : x ∈ ωω).
So ∀x,ℵLx1 < ℵ1.

Fact 5.23. If x ≡D y, then Lx = Ly. So the usual notation is L(x) for Lx as there is a
uniform def for L(x) given x.

In ZF + AC, every set has PSP, so ℵ1 is inacc by reals for (L(x) : x ∈ ωω).

Remark 5.24. ℵ1 is inacc by reals for (L(x) : x ∈ ωω) talks about more than ℵ1.

Claim 5.25. ∀x, ℵL(x)n < ℵ1.

Proof. ℵL(x)1 < ℵ1, so let y ∈WO s.t. ‖y‖ = ℵL(x)1 . In L(x⊕ y), we have ℵL(x⊕y)1 < ℵ1,
so ℵL(x)2 ≤ ℵL(x⊕y)1 < ℵ1(?. Simly ℵL(x)n < ℵ1.

Let a : ωω/ ≡D→ ℵ1 by x 7→ ℵL(x)1 . This is well-def by Fact 5.23. Def U on ℵ1
by A ∈ U ⇐⇒ a−1[A] ∈ MD (the pushforward of the Martin filter). U is then an
ℵ1-complete uf on ℵ1. WTP non-principality.

Suppose {α} ∈ U . Then a−1[{α}] ∈ MD, so there is a cone C ⊆ a−1[{α}]. Let

C = cone(x). Then ∀z, if x ≤D z, then ℵL(z)1 = α.

Let y be s.t. ‖y‖ = ℵL(z)1 and consider z ⊕ y. We have x ≤D z ≤D z ⊕ y, but

ℵL(z⊕y)1 > ℵL(z)1 , so no cone is included by the preimage of a singleton.

The last and non-examinable lecture on further consequences of AD did not happen,
but notes from the lecturer is available at Lent2020/infinitegames lecture24.pdf on the
lecturer’s page. Archived from the original on 22 Mar 2020.
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